version 1.41, 2010/11/19 20:03:13
|
version 1.45, 2010/11/23 23:14:20
|
Line 61 sub geogebra_endcode {
|
Line 61 sub geogebra_endcode {
|
# |
# |
sub geogebra_spline_program { |
sub geogebra_spline_program { |
return (<<ENDSPLINEPROGRAM); |
return (<<ENDSPLINEPROGRAM); |
<param name="ggbBase64" value="UEsDBBQACAAIADhQET0AAAAAAAAAAAAAAAASAAAAZ2VvZ2VicmFfbWFjcm8ueG1s7Z1bb+PGGYavk19BMDfexkvP+QCsEqzOuWi7gIveBG1By7RXrSwJsqyY+fWdGZLS2pQtzdqWSPoDApOSqCH5vSTnmdH7bj79en8zCVbJ4nY8m7ZCHKEwSKaj2eV4et0K75ZXH1X46y8/frpOZtfJxSIOrmaLm3jZCmlEQvP+TTxazILRzeXf4pukFZ7PJ+NpQsJgOZtNtrw1TCbz9Vu/f8Gn5/j0Czk9J/8Kg/FoNu2PJ+YrYXD7dfbHb9N/mG+040UrXC7ukvXefpvO75ZBjFrh5zCIsVnEZklaYdssqFnE4Vmx7d/vluuNV9nW7VW29ee228zs9NY0P1qa8w+W42W2//hu+XW2sGuX8dK+Y7ZMJslNMl0Gy3Ru3pnPxtNlGEzii2Rij+SXH3/4ZI86mF38Nxkt82MuPr+KJ7eJ3d8Pn8znndlktghM86bY1+7vhfsbT+ZfY7NmRHCbTuI0WQSreGI/zd8xzf11dpk8eDeejo0m9gRul8ncNoBNCedJcpkrmh2yWZmbJp2y3xzQaDZbXN4G962QRBwhKpEginGFJA2DtBWyiDPNJOVYEiwFEmHwZ9au+7orxPn4z/yQqKvqWV6sHWVrN6JsLMIIESqJ4EIiJiXP6yYoUoQIoYggFPHXq5u54l9cOML58UtHIkW4FJJQIqhQQrrK8UhizqRCmHPCNCeveMU1pXIsYlIrIYS57jBhiOWV4+ZdLZCWGEtMsGfl7ueL5NZ2BUU54ov/3Jse4X6erZ7cfwhawQmJUPCX4P7fJzRCH4KPAS1eE/v65wDbhXnj5LN9xd2nJ5vNyaPN7/ONY/OZ+8bJx4d7+PnhHrLN21vbfriJbbH9IQzOSpfF1d3UPfPDB2fqdDN90/kynSTB8ut49L+pKYjRfCPMWekCygQqGnKX01s9s/Y4uJ2CphtBUz9BUx9BUz9B092Cpr6Cpo0TdDS7uYmnl8HUsVXnbrFKOvFimdyO46k72fGajtz9uvyQUY/T2r0w6LPMQMkeaxCzb54Ps29wKcOjs3yHpXKP7K5H612ve6b20yUXz5V8n4ewe/C+WdHFnkX/pzne2eJRsTcoWirk6vlCrrLm1gVcfec1e9BebNMPoYgSTrUQiGGppGbYdUQ4wuYtxJhW1IAk4xk1bna0z/m5vWRb3dq/5qpbX3BZAZbm9RfbqWVPtM/foVw7HxaUlWv7Kdeun3JSC6KphS2sDb1m3IoizbTVjCjFmcJcH0K69mPpzr4dmdnXbkD31JCTloectDzkpN8OOU+/0NNz+roDT/c47ZgFN4v9xqGdVfbtz+3s2+0OjEvL41IimZLIAK151FAN41IYl771uJSbxx8VWFCsGKUwLoVxKYxLYVwK41IYl8K4tB6jGxiXwrj09celz1FcpxHjBoO53CCvMIMGwoSF3WLcYCCOasSxZlRJX4Z7rm5NoV8REcwpNhUiihJRwK+gDJurVjCmEOHspfB7MVrDr131hd/tPPME/OZksy/8dnbDb8e22NmPldyZNo2VtgqabgT1hl8PQVM/QdPdgqa+gr5r+HX3awG/Tmsf+M3nBn3ht915n/DbycrcKSNUxw+hOrVDKGanWhQnhCshCOO0QCgpsNIKGzYWVBF1CITqvGxqn5Wn9ll5ap/9/uWn0/OfTqMoetMp/SAWrbBrFtIs/Gb4u6usMTfTz91t6VrrdGHGH2b8YcYfZvxrWTmY8YcZf5jxhxl/mPGvxKAHZvxhxr9+ysGM/5Fn/IkkBBFlBg7M3CpvPWxo0IQ/VgprpZDGHBeRKR4JZMeuTCGLxkrBjD/M+MOMf3MEhRn/asIvzPhXc8b/ORboNgKhpBHAkpJiBCsm1JvPvHabglAykgafBGdMmCuUSV3MH3IipZaYMso5961cqccdXa4Ryq76ItT2XvEJhMr7x30Rqrsbobq2xe5+Pa4706b1uFsFTTeCeiOUh6Cpn6DpbkFTX0HfNUK5+7VAKKe1D0LlP6/6IlSn+z4RqpuVuVtGqK4fQnVrh1AP5w+pLAiKYM0lYhxLs8Uh+Kn7WDc/xwQvOyZ42THBj+OYCGLVCntmoc3i+wwUvVXWuDNSiNxIId0t61rv9lyzYKgAQwUYKsBQUbfKgaECDBVgqABDBRgqKjEgAkMFGCrqpxwYKsBQUUf4BUMFGCrAUAGGCjBUVAJ+wVABhorjgAAYKsBQAYaKQyIUGCpqLSgYKqqJUGCoqKCh4jkQ6DWCn3SEsZAGk5j5iwghxS/+UnClNULmD5av+Ptrryn8pCNmmFMwxZH9585w8T+lYYxR7C5lpIl+KT5dJmt8squ++LS9R3wCn/K+cV986u3Gp55tsbdfb+vOtGm97VZB042g3vjkIWjqJ2i6W9DUV9B3jU/ufi3wyWntg0+5O80Xn7q994lPvazMvTI+9fzwqVdzfOJM5PykhJSEmcG8wgjjg0xA9R4r5+dIFWVHqig7UkUlHKmmDdNW3y5NY/2XWVT7q2xvzqoqc6uqyq2q2t3V2f56fbcf8KyCZxU8q+BZrVvlwLMKnlXwrIJnFTyrlRg0gWcVPKv1Uw48q+BZrSP8gmcVPKvgWQXPKnhWKwG/4FkFz+pxQAA8q+BZBc/qIREKPKu1FhQ8q9VEKPCsgmf1CBQAnlXwrIJnFTyr4FkFz2qd8Qk8q5X0rD5HAv1GABRGkZTI1FpwTKnBpmICClGJBFGMKySp7y9Rz5WtKQCFcYSlFJgyJDjXhNM3Iajkak1QdtWXoLZ3ik8QVN497ktQ/d0E1bct9vfrcN2ZNq3D3SpouhHUm6A8BE39BE13C5r6CvquCcrdrwVBOa19CCr39/sSVK//Pgmqn5W5Xyaovh9B9WtHUKYDkoxLzgmhTFNW/IanzAdIKs0wUTw3ob8xQfUfK+eX+pHl1I8sp35kNVM/ZsW0NrBL09zgdWJAg1W2fxcHUnkcSOdxIIyKPBB2N352BP2B2zMEgyAYBMEgCAbVrXIQDIJgEASDIBgEwaBKjKsgGATBoPopB8EgCAbVEX4hGATBIAgGQTAIgkGVgF8IBkEw6DggAMEgCAZBMOiQCAXBoFoLCsGgaiIUBIMgGHQECoBgEASDIBgEwSAIBkEwqM74BMEgCAYdBQMgGATBIAgGHZKgIBhUa0EhGFRNgoJgUCWDQc+hwKAZBEUiojRVhp8kR5SJN0eoQWMQikS2ZIJaq6U2/+ECobDEWprRACJ2EPBShrq6XjOUXfVlqO3d4hMMlXeQ+zLUYDdDDWyLg/26XHemTetytwqabgT1ZigPQVM/QdPdgqa+gr5rhnL3a8FQTmsfhsozkr4M1R+8T4YaZGUelBlq4MdQg/ox1AMfFGcFQpnhvbPoMia0OkgGYPBYOL9stSpnq1U5W61qkq02K6a9oV2aBoevG7YerrIDcqFrnYeuMSpS17hIXZMidU3doyE7psHQHQvEryF+DfFriF/XrXIQv4b4NcSvIX4N8etKjLwgfg3x6/opB/FriF/XEX4hfg3xa4hfQ/wa4teVgF+IX0P8+jggAPFriF9D/PqQCAXx61oLCvHraiIUxK8hfn0ECoD4NcSvIX4N8WuIX0P8us74BPFriF8fBQMgfg3xa4hfH5KgIH5da0Ehfl1NgoL4NcSvj8MBEL+G+DXErw/KUBC/rrWgEL+uJkNB/LqK8evnUGDYDISikdCaGVxShlaZRipHKJudZEgyrTizCd7XY6hhYxiKRXg98+T7Q2epY73+uiYlu+pLSts7vydIKe8G9yWl4W5SGtoWh/t1rO5Mm9axbhU03QjqTUoegqZ+gqa7BU19BW06KW3ttIdZpz0sd9pDv057WL9OmyIuiMYYcY40UWvnDZN2Qh5hxjkR7BC99vAFjOuetAXjurvUh3HzfwfEl3EHwwYy7pP/Us3ZdTK7Ti4W8S//B1BLBwhgj4YNdwsAAFgqAQBQSwMEFAAIAAgAOFARPQAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWytVE2P2jAQPXd/heV7gTgEgpSwareXrVB7YLuH3pxkCC5OHNkOH/vrO7YT2EXqrQdw/Gb8/ObL2eO5keQI2gjV5jSazCiBtlSVaOuc9nb3OaWP64esBlVDoTnZKd1wm9N4wqjDe7F++JSZvToRLr3Lq4BTTndcGqDEdBp4ZfYA9gPO+7OQguvLz+IPlNbcDIHkue16vMXqHrGyqTbCjNupv7CTwn4TR1GBJlKVOV0kKB2/XkFbUXKZ0/ksICyn7M6IUOyse6XFm2qtc7+R7xAhxIg3wIwwh2VTH2gGfSlFJXjrgvE60ImQk6jsPqfLhCEliHqPWpNoFthKpXS1vRgLDTn/Bq3w7iWbLJaLmMX4wz88dgkWlqSTZJGweTRny9UqWWIKUS8KYYtJzFJkZctZki5SluChf9v81XDcgrVYSkP4GcyYz1qL6ppwt3k2X5W8QZ0SrX3ine21b4N4gLb24m7DvGkX45e2ljBgEVZpD+WhUOdtyFscqF8unT/i9RT1k5JKE+0CRf31sBZh9T5O6NVr5n1m3mPgcKRXe7Ri3sOvRVi9lxRtkDYEHo1Rj1XhZ2GIA5Dcde+YG8kLwGagpG+F3YwbbJrDLVLn/6NvCpya921zpYz+E2U2veu37AC6BRm6qsXC9qo35Oi6N5TO66igFA1ug2FICHfF+oUCAlpBrWHUHUYupMtbP3TuHZxNRxFOg0GtpcW3A+OxLpZt51Kfugm3OF05/c4bMGTD8Y2xF0oqbtHLPR3T98f9iA1vzPovUEsHCEyILqxEAgAAlQQAAFBLAQIUABQACAAIADhQET1gj4YNdwsAAFgqAQASAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9tYWNyby54bWxQSwECFAAUAAgACAA4UBE9TIgurEQCAACVBAAADAAAAAAAAAAAAAAAAAC3CwAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAegAAADUOAAAAAA=="/> |
<param name="ggbBase64" value="UEsDBBQACAAIANOAcz0AAAAAAAAAAAAAAAASAAAAZ2VvZ2VicmFfbWFjcm8ueG1s7Vxtb6tGGv3c/grEh1Vuu4njlzje2/hW5b1Sb3ulu1qttGorYhPHrQ0WJomnv74zA9hxgGuGNfYYnw/JYDwM8ByYM545z7n7fjWfKc9euJwG/lBtX12riuePgvHUnwzVp+jhcqB+/+Hru4kXTLz70FUegnDuRkO1e9VVldVy+t4Pfnbn3nLhjrzPo0dv7v4UjNyIt/YYRYv3rdbLy8tVevxVEE5ak0l0tVqO6fHzmb8cqsnGe9rc1kEvXV69c33dbv33409x85dTfxm5/shTFXpdc3cUBspoPmYXMVQ/L2ZT3+uoShQEs5xdjjdbrHf971P7n8pn+vepQ8vOr6oyHQW+NZ157JKWj8HLj/6/6UGaGw7VKHzy1PSEP/qLp0hxr4fqD6ritmnh0rIzVDVadGnhqq207i9P0bryc1JbS2o/82r0pEva/IgFTYmmUXx+9yl6DEK2NXYjtofW9Gbe3PMjJSILumcRTP1IVWbuvTdjV/Lh66/u2FUrwf0f3ihKrjn9/sGdLT12vq/u6Pd6MAtChTZP8Z7w//f8vztbPLp0iz4HvOrMJV6oPLsz9m2yhzb3MRh7W3tdfzrnqCvLyFuwBto0hAvPGycPVXzJdGNBm+QP16sLGgVBOF4qq/jEChmqPVb+FR/Lq/Cb/Tz9Kzlt9/XeiMxeX81dK4nTjohpjYhY54ARo4/5/x2yzs2NPEHrH+Ixa0rQevsO2moRektGPGkk3PvfV5R/Vot482L1ThkqFxQs5Rtl9dtF9+r6nXKpdNPPHfb5W6XNCrrj4gf2Kf72YlO986b6Kqns0u/4EReX22f4dvsMcXUtt+3tKqxF7Z2qtDJPxMOTz7t3detOM49FHPa0Dn9I6up+GAPG4ESP09GfPgWCPmavngW24UzHY48NC0pBRzbQETHoiAh0RAw6shs6IgodOWHoRsF87vpjxeejI/0pfPZ0N4y85dT1+W1N14Mb/g5G7+JBC0eVf6Ajlyge53C2dnuvuoLg1WhHi0+dnDAT2BE79Wh96jXHVKRl3kXWFt5+tfB+nIZhEL4JKx8ssmFgNmTuP9xFsPzuy4F7y8nJMTseybpZZsMTlym7dvZEFCViqiUx1TIx1SrEVJMupte1hvQ/9N5yHtMkCOkvnMzT+vzlmD7Hra4f1Ocjj4OyI5l0zLxpSrhrTZqND1qy/7RnW3dqvAL9uRpGnxgiMT9uv+VCmGhbmGhZTDQxTDRgEmOiFWDSev3jnH3mv+mLJh662YmHbnbioftm4oGWXVp29zsBwXlZp8UNLUrPR8RH68nRmJ/A/ATmJzA/cRpBw/wE5icwP4H5CcxPfOnN+AIT6I0YcLz9IVEnd+pN4c5+7dx5P1pzJ9sU5c78TrKAO5Pusix36ru5U2ct6uU6YH6np9sB50JHNtAJc6cAdEQMOrIbOiIK3ZlwJ38HU+7kqIpwp6ZX4k6tIsNIwp2Y28fc/snN7eeGVE9CqmdCqlcIqS5dSOt9SrFcguWS88akaLmkBCb6FiZ6FhNdDBMdmMSY6HtZwupll7B62SWsXsESFi17tOzVupSluP2hatDilhaVV7bi1oykNax0FY1KsNKFlS6sdMkVNKx0YaULK11Y6cJKF1a6sNKFlS6sdGGlCytdWOk6CHcajeDO/gG502gKdw5q587ReM2dbFOUO/M7yQLuTLrLstxp7OZOg7VolOuA+Z2ebgecCx3ZQCfMnQLQETHoyG7oiCh0Z8Kd/B1MuZOjKsKdulGJO/WKDCMJd0IlApUIVCJQieSG1EhCamRCalQIqSFdSHu1hhTCGwhvzhsTCG/kw6RIeFMCE2MLEyOLiSGGiQFMYkyMvYihbrJiqJusGOpmhxiKlje0vDmkKEpxB0PVpMW/aLE3jVTcupm0Ds1U0RgdmilopqCZkito0ExBMwXNFDRT0ExBMwXNFDRT0ExBMwXNFDRT0ExBMwXNFDRT0ExBMwXNlITcaTaCOwcH5E6zKdzZvq6dPMfemjzZpih55veSBeSZ9JdlydPcTZ4ma9Es1wPzOz3dHjgXOrKBTpg8BaAjYtCR3dARUejOhDz5O5iSJ0dVhDwNsxJ5GhUpRhLyhOAYguMaYgrBMQTH5y44zg2pmYTUzITUrBBSU7qQ9msNKTTch9RBQsMtHybQcMuHCTTc8mFSpOEugYm5hYmZxcQUw8QEJjEm5l509f2srr6f1dX3S+rqadmnZf+I+nraBm3LYiVtzKpNcB+fz0rPBwV+0Y9WKPChwIcCX66gQYEPBT4U+FDgQ4EPBT4U+FDgQ4EPBT4U+FDgQ4EPBT4U+FDgQ4EPBT4U+BJyJxT4otwJBT4U+FDgQ4EvC3RQ4B+NPK1GkGf7kAvrVmPYc+/rxJku2HtYsyfbFGXP/G6ygD2TDrMse1q72dNiLVrlumB+p6fbBedCRzbQCbOnAHREDDqyGzoiCt2ZsCd/B1P25KiKsKdpVWJPsyLHSMKeyF9D/loNMUX+GvLXkL+G/LVDhNRKQmplQmpVCKklXUgHtYYUKYGVh6lICWwEJkgJlA8TpATKhwlSAuXDpCglsAQm1hYmVhYTSwwTC5jEmFh7SdO8zaZp3mbTNG8F0zRpeUvLW5nSNekGbc1mJW3OPlz+ZnIFdnoFyOgsmsZBRicyOpHRKVfQkNGJjE5kdCKjExmdyOhERicyOpHRiYxOZHQioxMZncjoREYnMjqR0YmMTmR0SsidyOgU5U5kdCKjExmdyOiUBTpkdB6NPJHRiYxOZHQioxMZnScLHTI6j8aedjPY85AiK7sx7Fm/YOhhsmZPtinKnvndZAF7Jh1mWfa0d7OnzVq0y3XB/E5PtwvOhY5soBNmTwHoiBh0ZDd0RBS6M2FP/g6m7MlRFWFPy67EnlZFjpGEPeGHAD+EGmIKPwT4IcAPAX4I8EOQ3Q8hN6R2ElI7E1K7Qkht6ULarpef4DFReegPj4lGYAKPCfkwgceEfJjAY0I+TOAxIR8mRR4TJTCxtzCxs5jYYpjYwCTGxC7ARMz3Y5D1/RhkfT8GFX0/aDmg5UBq/w+6QdtzWEkbdI5pCJJck5NeEyxCimY2YRECixBYhMgVNFiEwCIEFiGwCIFFCCxCYBECixBYhMAiBBYhsAg5CHfCIkSUO2ERUpo7YRFyIh0wLEJOFjpYhByNO2ERIsqdsAiBRQgsQmARIgt0sAg5GnnCIkSYPWERAosQWITAIkQW6GARcjT2hEWIMHvCIgQWIbAIgUWILNDBIuRo7Ok0gz0PqRhyGsOe9UuGJo9r9mSbouyZ300WsGfSYZZlT2c3ezqsRadcF8zv9HS74FzoyAY6YfYUgI6IQUd2Q0dEoTsT9uTvYMqeHFUR9rSdSuxpV+QYSdgTBlsw2KohpjDYgsEWDLZgsAWDLRhsnZ/BVm5MnSSmTiamToWYOvLFtF6CgmlZ5Z9TMC1rBCYwLZMPE5iWyYcJTMvkwwSmZfJhAtMy+TApMi0rgYmzhYmTxcQRw8QBJjEmTgEmhUZyrYkXTLz70P3wN1BLBwgzo6j6TgoAAFNMAQBQSwMEFAAIAAgA04BzPQAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK7lAgBQSwcIRczeXRoAAAAYAAAAUEsDBBQACAAIANOAcz0AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1svVfbjts2EH1OvmKg540tUqQugb1BNiiaFtugqNug6JsscW0isiiIlL0u8vEdkpJXTtIFixYFbPF25j6ckVZvHg8NHEWvpWrXEVnEEYi2UrVsd+toMA+v8ujN7cvVTqid2PYlPKj+UJp1lCySCB61fN2qD+VB6K6sxKbai0N5r6rSOG57Y7rXy+XpdFpM9AvV75a73XbxqGukPzStXkfj5DWyuyI6JQ5O45gsf//p3rN/JVttyrYSEVi9Bnn78sXqJNtaneAka7NfR1lGItgLudujojznESxvX6w6NLITlZFHoZFytgRZryNz6CLLqitbe/7Cz6C5WBNBLY+yFv06iheMZzlLC05jEidZivJUL0VrRiyxIpHZcuK2Okpx8mztzElkERilmm2JHNM0gqPUctuIdfRQNhrNk+1Dj669rLU5N8Khx40n3cgNStTyTwSjtyLw/kBFb+IbFru/12gmnswkmn74hwIncRnnYeLovzIwmeQlPLmWR/9GXj7zLsEMAnxQ+0jg82c7cnADG5epX2bjMreP4hmdvctCXET4LCI8vnE/9/86Js+lwX8ncbWc0nE1+gj03mLHPDDigNcyhqQAXjiHAEcPciAFpOghQEdyYLjO4QYySOwegwRyKHCDJMAYjtyeMu/RFDiBlEHq3Q4JA54AIYigDIDGQKmdE6AYIOAcOJJklhu1DJIUWIqrJAeGWsWISZAGpyiXQkIgsXSUW4oM0hxoCqllSVCoDS6nkMaQEsuNxcAIMCcxA5pDYunSMfZjtoz5YjPGDcwP3A+pHzIYXSrbbjBXbqwO9TQ1qrvEC9FYF56qj68T18Vp6eraSgxVI2tZth8xXBZnwwuXMmev3lTmGC0ip0elVF9vzhpjCI9/iF7hncnYImOc5yknhOQ2rc/+hBK+4FlR5GnOKccZ1iRdlTb7OFmkaZEUlOe04EWMss7TEVvwBHmlOYuLAk+9ZHHcCGOwcWgoH4WebN/1sp7Pf9B3qqkv7uiUbM27sjND73oOXu/emvS23TViY5PdJTbW/urTVj1ufIInntev5w5XsZe/3b1TjeoBrwa1rtmN49aPDmMVu6Bih4kdYuRhmV7OSUEdwo1bPzpUI1uv2mgomawk8SRGanehkfk8JZpyKxrbSoZWmvtpYWT16clSi/8wHLaYEROZZfeuV9peStuhO6WlTZW3uD858lou+T/lrpZfJOpKd70oa70XwnwzdeOnxB09NqNA/w+HdnLfJdmfw5FAHA3EJYE4Fojjgbg0EJcF4vJAXBHq5+CAhEaEhIaEhMaEhAaFhEaFhIaFhMaFhAaGhEaGhkaGBt+V0MjQ0MjQ0MjQb0RGNLY9qhZgv6l61TSuOhxn88oxcNPevR2Oxbo8K+zMrr59P+tFdv3ek9/Z16mn3Y/f3L1Dplr0P+MbffP0yooHXvH3aIe4IvgF+btNuNTTplGnDfZ5WTbf1dKo/qp6z5wxCgOoxUM5NGbk4IrtV8V19Un0qJTv/i124EENGo5lc8W9RrEHXPqDsZOVtsv+hk3B79Zi14uplzTui833OXcaz98wvtheLSclrA4atfXRMtLY/oK2D2Zv7f3Rfi3CfYnfnOaM31SlsceWwZzOvQON34y3fwFQSwcI3KfwzsQEAAClDgAAUEsBAhQAFAAIAAgA04BzPTOjqPpOCgAAU0wBABIAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX21hY3JvLnhtbFBLAQIUABQACAAIANOAcz1FzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAI4KAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgA04BzPdyn8M7EBAAApQ4AAAwAAAAAAAAAAAAAAAAA7AoAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADAL4AAADqDwAAAAA=" /> |
ENDSPLINEPROGRAM |
ENDSPLINEPROGRAM |
} |
} |
|
|
Line 295 ENDAXESSCRIPT
|
Line 295 ENDAXESSCRIPT
|
} |
} |
|
|
sub axes_label { |
sub axes_label { |
my ($id,$xlabel,$ylabel)=@_; |
my ($id,$xmin,$xmax,$ymin,$ymax,$xlabel,$ylabel)=@_; |
unless ($xlabel || $ylabel) { return ''; } |
unless ($xlabel || $ylabel) { return ''; } |
my $return='document.ggbApplet_'.$id.'.evalCommand("topRight=Corner[3]");'; |
my $return='document.ggbApplet_'.$id.'.evalCommand("topRight=Corner[3]");'; |
if ($xlabel) { |
if ($xlabel) { |
|
if (($ymin<0) && ($ymax>0)) { |
$return.=(<<ENDXAXISLABELSCRIPT); |
$return.=(<<ENDXAXISLABELSCRIPT); |
document.ggbApplet_$id.evalCommand("Xlabel=(x(topRight)-AxisStepX[],AxisStepY[]/6)"); |
document.ggbApplet_$id.evalCommand("Xlabel=(x(topRight)-AxisStepX[],AxisStepY[]/6)"); |
document.ggbApplet_$id.setVisible("Xlabel",false); |
document.ggbApplet_$id.setVisible("Xlabel",false); |
document.ggbApplet_$id.evalCommand("Text[\\"$xlabel\\", Xlabel]"); |
document.ggbApplet_$id.evalCommand("Text[\\"$xlabel\\", Xlabel]"); |
ENDXAXISLABELSCRIPT |
ENDXAXISLABELSCRIPT |
|
} else { |
|
$return.=(<<ENDXOFFAXISLABEL); |
|
document.ggbApplet_$id.evalCommand("LowerRight=Corner[2]"); |
|
document.ggbApplet_$id.evalCommand("Text[\\"$xlabel\\", (x(LowerRight) - AxisStepX[], y(LowerRight) + AxisStepY[] / 2)]"); |
|
ENDXOFFAXISLABEL |
|
} |
} |
} |
if ($ylabel) { |
if ($ylabel) { |
|
if (($xmin<0) && ($xmax>0)) { |
$return.=(<<ENDYAXISLABELSCRIPT); |
$return.=(<<ENDYAXISLABELSCRIPT); |
document.ggbApplet_$id.evalCommand("Ylabel=(AxisStepX[]/6,y(topRight)-AxisStepY[]/3)"); |
document.ggbApplet_$id.evalCommand("Ylabel=(AxisStepX[]/6,y(topRight)-AxisStepY[]/3)"); |
document.ggbApplet_$id.setVisible("Ylabel",false); |
document.ggbApplet_$id.setVisible("Ylabel",false); |
document.ggbApplet_$id.evalCommand("Text[\\"$ylabel\\", Ylabel]"); |
document.ggbApplet_$id.evalCommand("Text[\\"$ylabel\\", Ylabel]"); |
ENDYAXISLABELSCRIPT |
ENDYAXISLABELSCRIPT |
|
} else { |
|
$return.=(<<ENDYOFFAXISLABEL); |
|
document.ggbApplet_$id.evalCommand("UpperLeft=Corner[4]"); |
|
document.ggbApplet_$id.evalCommand("Text[\\"$ylabel\\", (x(UpperLeft) + AxisStepX[] / 5, y(UpperLeft) - AxisStepY[] / 1.8)]"); |
|
ENDYOFFAXISLABEL |
|
} |
} |
} |
return $return; |
return $return; |
} |
} |
Line 329 sub plot_script {
|
Line 343 sub plot_script {
|
$label='C'.$Apache::functionplotresponse::counter; |
$label='C'.$Apache::functionplotresponse::counter; |
} |
} |
if ($fixed) { |
if ($fixed) { |
return "document.ggbApplet_$id.evalCommand('$label=Function[$function,$xmin,$xmax]')". |
return "document.ggbApplet_$id.evalCommand('$label=Function[$function,$xmin,$xmax]');\n". |
($visible?'':"document.ggbApplet.setLabelVisible('$label', false);"); |
($visible?'':"document.ggbApplet_$id.setLabelVisible('$label', false);\n"); |
} else { |
} else { |
return "document.ggbApplet_$id.evalCommand('y=$function')"; |
return "document.ggbApplet_$id.evalCommand('y=$function')"; |
} |
} |
Line 441 sub start_functionplotrule {
|
Line 455 sub start_functionplotrule {
|
$relationship='eq'; |
$relationship='eq'; |
} |
} |
my $derivative=&Apache::lonxml::get_param('derivativeorder',$parstack,$safeeval); |
my $derivative=&Apache::lonxml::get_param('derivativeorder',$parstack,$safeeval); |
unless (($derivative==0) || ($derivative==1) || ($derivative==2)) { |
unless (($derivative==-1) || ($derivative==0) || ($derivative==1) || ($derivative==2)) { |
&Apache::lonxml::warning(&mt('Rule derivative not defined.')); |
&Apache::lonxml::warning(&mt('Rule derivative not defined.')); |
$derivative=0; |
$derivative=0; |
} |
} |
Line 465 sub start_functionplotrule {
|
Line 479 sub start_functionplotrule {
|
&Apache::edit::select_arg(&mt('Function:'),'derivativeorder', |
&Apache::edit::select_arg(&mt('Function:'),'derivativeorder', |
[['0','Function itself'], |
[['0','Function itself'], |
['1','First derivative'], |
['1','First derivative'], |
['2','Second derivative']],$token).'<br />'. |
['2','Second derivative'], |
&Apache::edit::text_arg('(Initial) x-value:','xinitial', |
['-1','Integral']],$token).'<br />'. |
|
&Apache::edit::text_arg('Initial x-value:','xinitial', |
$token,'8'). |
$token,'8'). |
&Apache::edit::select_or_text_arg('(Initial) x-value label:','xinitiallabel', |
&Apache::edit::select_or_text_arg('Initial x-value label:','xinitiallabel', |
[['start','Start of Plot']],$token,'8').'<br />'. |
[['start','Start of Plot'], |
|
['end','End of Plot']],$token,'8').'<br />'. |
|
|
&Apache::edit::text_arg('Optional final x-value for ranges:','xfinal', |
&Apache::edit::text_arg('Final x-value (optional):','xfinal', |
$token,'8'). |
$token,'8'). |
&Apache::edit::select_or_text_arg('Optional final x-value label:','xfinallabel', |
&Apache::edit::select_or_text_arg('Final x-value label (optional):','xfinallabel', |
[['end','End of Plot']],$token,'8').'<br />'. |
[['end','End of Plot']],$token,'8').'<br />'. |
&Apache::edit::text_arg('Optional minimum length for range:','minimumlength', |
&Apache::edit::text_arg('Minimum length for range (optional):','minimumlength', |
$token,'8'). |
$token,'8'). |
&Apache::edit::text_arg('Optional maximum length for range:','maximumlength', |
&Apache::edit::text_arg('Maximum length for range (optional):','maximumlength', |
$token,'8').'<br />'. |
$token,'8').'<br />'. |
&Apache::edit::select_or_text_arg(&mt('Relationship:'),'relationship', |
&Apache::edit::select_or_text_arg(&mt('Relationship:'),'relationship', |
[['eq','equal'], |
[['eq','equal'], |
Line 561 sub start_spline {
|
Line 577 sub start_spline {
|
&Apache::edit::text_arg('Index:','index', |
&Apache::edit::text_arg('Index:','index', |
$token,'4').' '. |
$token,'4').' '. |
&Apache::edit::select_arg('Order:','order', |
&Apache::edit::select_arg('Order:','order', |
['2','3','4','5','6','7','8','9'],$token).' '. |
['2','3','4','5','6','7','8'],$token).' '. |
&Apache::edit::text_arg('Initial x-value:','initx', |
&Apache::edit::text_arg('Initial x-value:','initx', |
$token,'4').' '. |
$token,'4').' '. |
&Apache::edit::text_arg('Initial y-value:','inity', |
&Apache::edit::text_arg('Initial y-value:','inity', |
Line 628 sub get_answer_from_form_fields {
|
Line 644 sub get_answer_from_form_fields {
|
|
|
sub cubic_hermite { |
sub cubic_hermite { |
my ($t,$p1,$s1,$p2,$s2)=@_; |
my ($t,$p1,$s1,$p2,$s2)=@_; |
return (2.*$t*$t*$t-3.*$t*$t+1.)*$p1 + 5.*($t*$t*$t-2.*$t*$t+$t)*($s1-$p1)+ |
return (2.*$t*$t*$t-3.*$t*$t+1.)*$p1 + 3.*($t*$t*$t-2.*$t*$t+$t)*($s1-$p1)+ |
(-2.*$t*$t*$t+3.*$t*$t) *$p2 + 5.*($t*$t*$t-$t*$t) *($s2-$p2); |
(-2.*$t*$t*$t+3.*$t*$t) *$p2 + 3.*($t*$t*$t-$t*$t) *($s2-$p2); |
} |
} |
|
|
# |
# |
Line 638 sub cubic_hermite {
|
Line 654 sub cubic_hermite {
|
|
|
sub ddt_cubic_hermite { |
sub ddt_cubic_hermite { |
my ($t,$p1,$s1,$p2,$s2)=@_; |
my ($t,$p1,$s1,$p2,$s2)=@_; |
return (6.*$t*$t-6.*$t) *$p1 + 5.*(3.*$t*$t-4.*$t+1.)*($s1-$p1)+ |
return (6.*$t*$t-6.*$t) *$p1 + 3.*(3.*$t*$t-4.*$t+1.)*($s1-$p1)+ |
(-6.*$t*$t+6.*$t)*$p2 + 5.*(3.*$t*$t-2.*$t) *($s2-$p2); |
(-6.*$t*$t+6.*$t)*$p2 + 3.*(3.*$t*$t-2.*$t) *($s2-$p2); |
} |
} |
|
|
# |
# |
Line 648 sub ddt_cubic_hermite {
|
Line 664 sub ddt_cubic_hermite {
|
|
|
sub d2dt2_cubic_hermite { |
sub d2dt2_cubic_hermite { |
my ($t,$p1,$s1,$p2,$s2)=@_; |
my ($t,$p1,$s1,$p2,$s2)=@_; |
return (12.*$t-6.) *$p1 + 5.*(6.*$t-4.)*($s1-$p1)+ |
return (12.*$t-6.) *$p1 + 3.*(6.*$t-4.)*($s1-$p1)+ |
(-12.*$t+6.)*$p2 + 5.*(6.*$t-2.)*($s2-$p2); |
(-12.*$t+6.)*$p2 + 3.*(6.*$t-2.)*($s2-$p2); |
} |
} |
|
|
# |
# |
Line 895 sub functionplotrulecheck {
|
Line 911 sub functionplotrulecheck {
|
=split(/\:/,$rule); |
=split(/\:/,$rule); |
$percent=($percent>0?$percent:5); |
$percent=($percent>0?$percent:5); |
&addlog("================="); |
&addlog("================="); |
&addlog("Rule $label for ".('function itself','first derivative','second derivative')[$derivative]." $relationship $value"); |
&addlog("Rule $label for ".($derivative<0?'integral':('function itself','first derivative','second derivative')[$derivative])." $relationship $value"); |
my $li=0; |
my $li=0; |
my $lh=400; |
my $lh=400; |
|
|
Line 952 sub functionplotrulecheck {
|
Line 968 sub functionplotrulecheck {
|
$tol=4.*$tol/($xmax-$xmin); |
$tol=4.*$tol/($xmax-$xmin); |
} elsif ($derivative==1) { |
} elsif ($derivative==1) { |
$tol=2.*$tol/($xmax-$xmin); |
$tol=2.*$tol/($xmax-$xmin); |
|
} elsif ($derivative==-1) { |
|
$tol=$tol*($xmax-$xmin)/2.; |
} |
} |
} |
} |
for (my $i=$li; $i<=$lh; $i++) { |
my $integral=0; |
|
my $binwidth=($xmax-$xmin)/400.; |
|
if (($derivative<0) && (!$findupper)) { |
|
# definite integral, calculate over whole length |
|
&addlog("Calculating definite integral"); |
|
for (my $i=$li; $i<=$lh; $i++) { |
|
$integral+=$Apache::functionplotresponse::func[$i]*$binwidth; |
|
} |
|
unless (&compare_rel($relationship,$value,$integral,$tol)) { |
|
&addlog("Actual integral ".(defined($integral)?$integral:'undef').", expected $value, tolerance $tol"); |
|
&addlog("Rule $label failed."); |
|
my $hintlabel=$label; |
|
$hintlabel=~s/^R//; |
|
push(@Apache::functionplotresponse::failedrules,$hintlabel); |
|
&addlog("Set hint condition $hintlabel"); |
|
return 0; |
|
} |
|
} else { |
|
for (my $i=$li; $i<=$lh; $i++) { |
my $val; |
my $val; |
if ($derivative==2) { |
if ($derivative==2) { |
$val=$Apache::functionplotresponse::d2funcdx2[$i]; |
$val=$Apache::functionplotresponse::d2funcdx2[$i]; |
} elsif ($derivative==1) { |
} elsif ($derivative==1) { |
$val=$Apache::functionplotresponse::dfuncdx[$i]; |
$val=$Apache::functionplotresponse::dfuncdx[$i]; |
|
} elsif ($derivative==-1) { |
|
$integral+=$Apache::functionplotresponse::func[$i]*$binwidth; |
|
$val=$integral; |
} else { |
} else { |
$val=$Apache::functionplotresponse::func[$i]; |
$val=$Apache::functionplotresponse::func[$i]; |
} |
} |
Line 993 sub functionplotrulecheck {
|
Line 1032 sub functionplotrulecheck {
|
return 0; |
return 0; |
} |
} |
} |
} |
|
} |
} |
} |
&addlog("Rule $label passed."); |
&addlog("Rule $label passed."); |
return 1; |
return 1; |
Line 1187 sub start_functionplotelements {
|
Line 1227 sub start_functionplotelements {
|
$result.=&start_init_script($internalid); |
$result.=&start_init_script($internalid); |
# put the axis commands inside |
# put the axis commands inside |
$result.=&axes_script($internalid,$xmin,$xmax,$ymin,$ymax,$xaxisvisible,$yaxisvisible,$gridvisible); |
$result.=&axes_script($internalid,$xmin,$xmax,$ymin,$ymax,$xaxisvisible,$yaxisvisible,$gridvisible); |
$result.=&axes_label($internalid,$xlabel,$ylabel); |
$result.=&axes_label($internalid,$xmin,$xmax,$ymin,$ymax,$xlabel,$ylabel); |
# init script is left open |
# init script is left open |
} |
} |
return $result; |
return $result; |