Annotation of loncom/homework/templates/HintMathResponse.problem, revision 1.2
1.2 ! albertel 1: <problem>
! 2: <script type="loncapa/perl">
1.1 www 3: $a1 = random(-6,6,4);
4: $a2 = random(-6,6,4);
5: $n1 = random(3,11,2);
6: $n2 = random(2,10,2);
7: $function = "$a1*cos($n1*x)+$a2*sin($n2*x)";
1.2 ! albertel 8: $example=&xmlparse('An example would be <m eval="on">$(sin($n1\cdot x)+cos($n2\cdot x))/\sqrt{2}$</m>');
! 9: </script>
! 10:
! 11: <startouttext />
1.1 www 12: Give an example of a function
13: <ol>
1.2 ! albertel 14: <li>which is orthogonal to <algebra>$function</algebra> with respect to the
! 15: scalar product
! 16: <m>\[<g \mid h> = \frac{1}{\pi} \int_{-\pi}^{\pi}dx g(x) \cdot h(x)\]</m>
! 17: </li>
! 18: <li>whose norm is 1.</li>
! 19: </ol>
! 20: <endouttext />
! 21:
! 22: <mathresponse answerdisplay="$example" cas="maxima" args="$function">
! 23:
! 24: <answer>
! 25: overlap:integrate((RESPONSE[1])*(LONCAPALIST[1]),x,-%pi,%pi)/%pi;
1.1 www 26: norm:integrate((RESPONSE[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
1.2 ! albertel 27: is(overlap=0 and norm=1);
! 28: </answer>
! 29:
! 30: <textline readonly="no" size="50" />
! 31:
! 32: <hintgroup showoncorrect="no">
! 33:
! 34: <mathhint name="ortho" args="$function" cas="maxima">
! 35:
! 36: <answer>
! 37: overlap: integrate((LONCAPALIST[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
! 38: is(not overlap = 0);
! 39: </answer>
! 40: </mathhint>
! 41:
! 42: <mathhint name="norm" args="$function" cas="maxima">
! 43: <answer>
! 44: norm: integrate((RESPONSE[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
! 45: is(not norm = 1);
! 46: </answer>
! 47: </mathhint>
! 48:
! 49: <hintpart on="norm">
! 50: <startouttext />
! 51: The function you have provided does not have a norm of one.
! 52: <endouttext />
! 53: </hintpart>
! 54:
! 55: <hintpart on="ortho">
! 56: <startouttext />
! 57: The function you have provided is not orthogonal.
! 58: <endouttext />
! 59: </hintpart>
! 60:
! 61: </hintgroup>
! 62: </mathresponse>
! 63:
! 64: <postanswerdate>
! 65:
! 66: <startouttext />
! 67: <p>
! 68: Note that with respect to the above norm, <m>$\cos(nx)$</m> is
! 69: perpendicular to <m>$\sin(nx)$</m> and perpendicular to <m>$\cos(mx)$</m>
! 70: for <m>$n\ne m$</m>.
! 71: </p>
! 72: <endouttext />
! 73:
! 74: </postanswerdate>
1.1 www 75: </problem>
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>