Annotation of loncom/homework/templates/HintMathResponse.problem, revision 1.3
1.2 albertel 1: <problem>
2: <script type="loncapa/perl">
1.3 ! albertel 3: $a1 = &random(-6,6,4);
! 4: $a2 = &random(-6,6,4);
! 5: $n1 = &random(3,11,2);
! 6: $n2 = &random(2,10,2);
1.1 www 7: $function = "$a1*cos($n1*x)+$a2*sin($n2*x)";
1.2 albertel 8: $example=&xmlparse('An example would be <m eval="on">$(sin($n1\cdot x)+cos($n2\cdot x))/\sqrt{2}$</m>');
9: </script>
10:
11: <startouttext />
1.1 www 12: Give an example of a function
13: <ol>
1.2 albertel 14: <li>which is orthogonal to <algebra>$function</algebra> with respect to the
15: scalar product
16: <m>\[<g \mid h> = \frac{1}{\pi} \int_{-\pi}^{\pi}dx g(x) \cdot h(x)\]</m>
17: </li>
18: <li>whose norm is 1.</li>
19: </ol>
20: <endouttext />
21:
22: <mathresponse answerdisplay="$example" cas="maxima" args="$function">
23:
24: <answer>
25: overlap:integrate((RESPONSE[1])*(LONCAPALIST[1]),x,-%pi,%pi)/%pi;
1.1 www 26: norm:integrate((RESPONSE[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
1.2 albertel 27: is(overlap=0 and norm=1);
28: </answer>
29:
30: <textline readonly="no" size="50" />
31:
32: <hintgroup showoncorrect="no">
33:
34: <mathhint name="ortho" args="$function" cas="maxima">
35:
36: <answer>
37: overlap: integrate((LONCAPALIST[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
38: is(not overlap = 0);
39: </answer>
40: </mathhint>
41:
42: <mathhint name="norm" args="$function" cas="maxima">
43: <answer>
44: norm: integrate((RESPONSE[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
45: is(not norm = 1);
46: </answer>
47: </mathhint>
48:
49: <hintpart on="norm">
50: <startouttext />
51: The function you have provided does not have a norm of one.
52: <endouttext />
53: </hintpart>
54:
55: <hintpart on="ortho">
56: <startouttext />
57: The function you have provided is not orthogonal.
58: <endouttext />
59: </hintpart>
60:
61: </hintgroup>
62: </mathresponse>
63:
64: <postanswerdate>
65:
66: <startouttext />
67: <p>
68: Note that with respect to the above norm, <m>$\cos(nx)$</m> is
69: perpendicular to <m>$\sin(nx)$</m> and perpendicular to <m>$\cos(mx)$</m>
70: for <m>$n\ne m$</m>.
71: </p>
72: <endouttext />
73:
74: </postanswerdate>
1.1 www 75: </problem>
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>