Annotation of loncom/homework/templates/HintMathResponse.problem, revision 1.4
1.2 albertel 1: <problem>
1.4 ! bisitz 2:
! 3: <script type="loncapa/perl">
1.3 albertel 4: $a1 = &random(-6,6,4);
5: $a2 = &random(-6,6,4);
6: $n1 = &random(3,11,2);
7: $n2 = &random(2,10,2);
1.1 www 8: $function = "$a1*cos($n1*x)+$a2*sin($n2*x)";
1.4 ! bisitz 9: $example=&xmlparse('An example would be <m eval="on">$ (sin($n1\cdot x)+cos($n2\cdot x))/\sqrt{2} $</m>');
! 10: </script>
1.2 albertel 11:
1.4 ! bisitz 12: <startouttext />
1.1 www 13: Give an example of a function
14: <ol>
1.4 ! bisitz 15: <li>which is orthogonal to <algebra>$function</algebra> with respect to the scalar product
1.2 albertel 16: <m>\[<g \mid h> = \frac{1}{\pi} \int_{-\pi}^{\pi}dx g(x) \cdot h(x)\]</m>
17: </li>
18: <li>whose norm is 1.</li>
19: </ol>
1.4 ! bisitz 20: <endouttext />
1.2 albertel 21:
1.4 ! bisitz 22: <mathresponse answerdisplay="$example" cas="maxima" args="$function">
! 23: <answer>
1.2 albertel 24: overlap:integrate((RESPONSE[1])*(LONCAPALIST[1]),x,-%pi,%pi)/%pi;
1.1 www 25: norm:integrate((RESPONSE[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
1.2 albertel 26: is(overlap=0 and norm=1);
1.4 ! bisitz 27: </answer>
1.2 albertel 28:
1.4 ! bisitz 29: <textline readonly="no" size="50" />
1.2 albertel 30:
1.4 ! bisitz 31: <hintgroup showoncorrect="no">
! 32: <mathhint name="ortho" args="$function" cas="maxima">
! 33: <answer>
1.2 albertel 34: overlap: integrate((LONCAPALIST[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
35: is(not overlap = 0);
1.4 ! bisitz 36: </answer>
! 37: </mathhint>
1.2 albertel 38:
1.4 ! bisitz 39: <mathhint name="norm" args="$function" cas="maxima">
! 40: <answer>
1.2 albertel 41: norm: integrate((RESPONSE[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
42: is(not norm = 1);
1.4 ! bisitz 43: </answer>
! 44: </mathhint>
1.2 albertel 45:
1.4 ! bisitz 46: <hintpart on="norm">
! 47: <startouttext />
1.2 albertel 48: The function you have provided does not have a norm of one.
1.4 ! bisitz 49: <endouttext />
! 50: </hintpart>
1.2 albertel 51:
1.4 ! bisitz 52: <hintpart on="ortho">
! 53: <startouttext />
1.2 albertel 54: The function you have provided is not orthogonal.
1.4 ! bisitz 55: <endouttext />
! 56: </hintpart>
1.2 albertel 57:
1.4 ! bisitz 58: </hintgroup>
! 59: </mathresponse>
1.2 albertel 60:
1.4 ! bisitz 61: <postanswerdate>
! 62: <startouttext />
1.2 albertel 63: <p>
1.4 ! bisitz 64: Note that with respect to the above norm, <m>$ \cos(nx) $</m> is perpendicular to <m>$ \sin(nx) $</m> and perpendicular to <m>$ \cos(mx) $</m> for <m>$ n\ne m $</m>.
1.2 albertel 65: </p>
1.4 ! bisitz 66: <endouttext />
! 67: </postanswerdate>
1.2 albertel 68:
1.1 www 69: </problem>
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>