Annotation of loncom/homework/templates/HintMathResponse.problem, revision 1.5
1.2 albertel 1: <problem>
1.4 bisitz 2:
3: <script type="loncapa/perl">
1.3 albertel 4: $a1 = &random(-6,6,4);
5: $a2 = &random(-6,6,4);
6: $n1 = &random(3,11,2);
7: $n2 = &random(2,10,2);
1.1 www 8: $function = "$a1*cos($n1*x)+$a2*sin($n2*x)";
1.4 bisitz 9: $example=&xmlparse('An example would be <m eval="on">$ (sin($n1\cdot x)+cos($n2\cdot x))/\sqrt{2} $</m>');
10: </script>
1.2 albertel 11:
1.4 bisitz 12: <startouttext />
1.1 www 13: Give an example of a function
14: <ol>
1.5 ! www 15: <li>which is orthogonal to<br />
! 16: <center> <algebra>$function</algebra></center>
! 17: <br />
! 18: with respect to the scalar product
1.2 albertel 19: <m>\[<g \mid h> = \frac{1}{\pi} \int_{-\pi}^{\pi}dx g(x) \cdot h(x)\]</m>
20: </li>
21: <li>whose norm is 1.</li>
22: </ol>
1.4 bisitz 23: <endouttext />
1.2 albertel 24:
1.4 bisitz 25: <mathresponse answerdisplay="$example" cas="maxima" args="$function">
26: <answer>
1.2 albertel 27: overlap:integrate((RESPONSE[1])*(LONCAPALIST[1]),x,-%pi,%pi)/%pi;
1.1 www 28: norm:integrate((RESPONSE[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
1.2 albertel 29: is(overlap=0 and norm=1);
1.4 bisitz 30: </answer>
1.2 albertel 31:
1.4 bisitz 32: <textline readonly="no" size="50" />
1.2 albertel 33:
1.4 bisitz 34: <hintgroup showoncorrect="no">
35: <mathhint name="ortho" args="$function" cas="maxima">
36: <answer>
1.2 albertel 37: overlap: integrate((LONCAPALIST[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
38: is(not overlap = 0);
1.4 bisitz 39: </answer>
40: </mathhint>
1.2 albertel 41:
1.4 bisitz 42: <mathhint name="norm" args="$function" cas="maxima">
43: <answer>
1.2 albertel 44: norm: integrate((RESPONSE[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
45: is(not norm = 1);
1.4 bisitz 46: </answer>
47: </mathhint>
1.2 albertel 48:
1.4 bisitz 49: <hintpart on="norm">
50: <startouttext />
1.2 albertel 51: The function you have provided does not have a norm of one.
1.4 bisitz 52: <endouttext />
53: </hintpart>
1.2 albertel 54:
1.4 bisitz 55: <hintpart on="ortho">
56: <startouttext />
1.2 albertel 57: The function you have provided is not orthogonal.
1.4 bisitz 58: <endouttext />
59: </hintpart>
1.2 albertel 60:
1.4 bisitz 61: </hintgroup>
62: </mathresponse>
1.2 albertel 63:
1.4 bisitz 64: <postanswerdate>
65: <startouttext />
1.2 albertel 66: <p>
1.4 bisitz 67: Note that with respect to the above norm, <m>$ \cos(nx) $</m> is perpendicular to <m>$ \sin(nx) $</m> and perpendicular to <m>$ \cos(mx) $</m> for <m>$ n\ne m $</m>.
1.2 albertel 68: </p>
1.4 bisitz 69: <endouttext />
70: </postanswerdate>
1.2 albertel 71:
1.1 www 72: </problem>
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>