File:
[LON-CAPA] /
loncom /
homework /
templates /
HintMathResponse.problem
Revision
1.5:
download - view:
text,
annotated -
select for diffs
Fri Jun 11 19:50:12 2010 UTC (14 years, 6 months ago) by
www
Branches:
MAIN
CVS tags:
version_2_12_X,
version_2_11_X,
version_2_11_5_msu,
version_2_11_5,
version_2_11_4_uiuc,
version_2_11_4_msu,
version_2_11_4,
version_2_11_3_uiuc,
version_2_11_3_msu,
version_2_11_3,
version_2_11_2_uiuc,
version_2_11_2_msu,
version_2_11_2_educog,
version_2_11_2,
version_2_11_1,
version_2_11_0_RC3,
version_2_11_0_RC2,
version_2_11_0_RC1,
version_2_11_0,
version_2_10_X,
version_2_10_1,
version_2_10_0_RC2,
version_2_10_0_RC1,
version_2_10_0,
loncapaMITrelate_1,
language_hyphenation_merge,
language_hyphenation,
HEAD,
BZ4492-merge,
BZ4492-feature_horizontal_radioresponse,
BZ4492-feature_Support_horizontal_radioresponse,
BZ4492-Support_horizontal_radioresponse
New templates
Cleaner mathresponse template
<problem>
<script type="loncapa/perl">
$a1 = &random(-6,6,4);
$a2 = &random(-6,6,4);
$n1 = &random(3,11,2);
$n2 = &random(2,10,2);
$function = "$a1*cos($n1*x)+$a2*sin($n2*x)";
$example=&xmlparse('An example would be <m eval="on">$ (sin($n1\cdot x)+cos($n2\cdot x))/\sqrt{2} $</m>');
</script>
<startouttext />
Give an example of a function
<ol>
<li>which is orthogonal to<br />
<center> <algebra>$function</algebra></center>
<br />
with respect to the scalar product
<m>\[<g \mid h> = \frac{1}{\pi} \int_{-\pi}^{\pi}dx g(x) \cdot h(x)\]</m>
</li>
<li>whose norm is 1.</li>
</ol>
<endouttext />
<mathresponse answerdisplay="$example" cas="maxima" args="$function">
<answer>
overlap:integrate((RESPONSE[1])*(LONCAPALIST[1]),x,-%pi,%pi)/%pi;
norm:integrate((RESPONSE[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
is(overlap=0 and norm=1);
</answer>
<textline readonly="no" size="50" />
<hintgroup showoncorrect="no">
<mathhint name="ortho" args="$function" cas="maxima">
<answer>
overlap: integrate((LONCAPALIST[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
is(not overlap = 0);
</answer>
</mathhint>
<mathhint name="norm" args="$function" cas="maxima">
<answer>
norm: integrate((RESPONSE[1])*(RESPONSE[1]),x,-%pi,%pi)/%pi;
is(not norm = 1);
</answer>
</mathhint>
<hintpart on="norm">
<startouttext />
The function you have provided does not have a norm of one.
<endouttext />
</hintpart>
<hintpart on="ortho">
<startouttext />
The function you have provided is not orthogonal.
<endouttext />
</hintpart>
</hintgroup>
</mathresponse>
<postanswerdate>
<startouttext />
<p>
Note that with respect to the above norm, <m>$ \cos(nx) $</m> is perpendicular to <m>$ \sin(nx) $</m> and perpendicular to <m>$ \cos(mx) $</m> for <m>$ n\ne m $</m>.
</p>
<endouttext />
</postanswerdate>
</problem>
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>