Annotation of loncom/html/adm/help/tex/Problem_LON-CAPA_Functions.tex, revision 1.1

1.1     ! bowersj2    1: \label{Problem_LON-CAPA_Functions}
        !             2: 
        !             3: \begin{longtable}{|p{8.5cm}|p{8.5cm}|}
        !             4: \hline 
        !             5:  \textbf{LON-CAPA Function }
        !             6:  &\textbf{Description }
        !             7:  \endhead
        !             8:  \hline 
        !             9: 
        !            10: \&sin(\$x), \&cos(\$x), \&tan(\$x)  & Trigonometric functions where x is in radians. \$x can be a pure number, i.e., you can call \&sin(3.1415) \\
        !            11: \hline
        !            12:  
        !            13: \&asin(\$x), \&acos(\$x), \&atan(\$x), \&atan2(\$y,\$x)  & Inverse trigonometric functions. Return value is in radians. For asin and acos the value of x must be between -1 and 1. The atan2 returns a value between -pi and pi the sign of which is determined by y. \$x and \$y can be pure numbers \\
        !            14: \hline
        !            15:  
        !            16: \&log(\$x), \&log10(\$x)  & Natural and base-10 logarithm. \$x can be a pure number \\
        !            17: \hline
        !            18:  
        !            19: \&exp(\$x), \&pow(\$x,\$y), \&sqrt(\$x)  & Exponential, power and square root, i.e.,ex, xy and /x. \$x and \$y can be pure numbers \\
        !            20: \hline
        !            21:  
        !            22: \&abs(\$x), \&sgn(\$x)  & Abs takes the absolute value of x while sgn(x) returns 1, 0 or -1 depending on the value of x. For x$>$0, sgn(x) = 1, for x=0, sgn(x) = 0 and for x$<$0, sgn(x) = -1. \$x can be a pure number \\
        !            23: \hline
        !            24:  
        !            25: \&erf(\$x), \&erfc(\$x)  & Error function.  erf = 2/sqrt(pi) integral (0,x) et-sq and \emph{ erfx(x)}
        !            26:  = 1.0 - \emph{erf(x)}
        !            27: .  \$x can be a pure number \\
        !            28: \hline
        !            29:  
        !            30: \&ceil(\$x), \&floor(\$x)  & Ceil function returns an integer rounded up whereas floor function returns and integer rounded down. If x is an integer than it returns the value of the integer. \$x can be a pure number \\
        !            31: \hline
        !            32:  
        !            33: \&min(...), \&max(...)  & Returns the minimum/ maximum value of a list of arguments if the arguments are numbers. If the arguments are strings then it returns a string sorted according to the ASCII codes \\
        !            34: \hline
        !            35:  
        !            36: \&factorial(\$n)  & Argument (n) must be an integer else it will round down. The largest value for n is 170. \$n can be a pure number \\
        !            37: \hline
        !            38:  
        !            39: \$N\%\$M  & N and M are integers and returns the remainder (in integer) of N/M. \$N and \$M can be pure numbers \\
        !            40: \hline
        !            41:  
        !            42: \&sinh(\$x), \&cosh(\$x), \&tanh(\$x)  & Hyperbolic functions. \$x can be a pure number \\
        !            43: \hline
        !            44:  
        !            45: \&asinh(\$x), \&acosh(\$x), \&atanh(\$x)  & Inverse hyperbolic functions. \$x can be a pure number \\
        !            46: \hline
        !            47:  
        !            48: \&format(\$x,''nn'')  & Display or format \$x as nn where nn is nF or nE and n is an integer. Also supports the first character being a \$, it thjen will format the result with a call to \&dollarformat() described below. \\
        !            49: \hline
        !            50:  
        !            51: \&prettyprint(\$x,''nn'')  & Display or format \$x as nn where nn is nF or nE and n is an integer. Also supports the first character being a \$, it then will format the result with a a call to \&dollarformat() described below. In E mode it will attempt to generate a pretty x10\^{}3 rather than a E3 following the number \\
        !            52: \hline
        !            53:  
        !            54: \&dollarformat(\$x  & Reformats \$x to have a \$ (or $\backslash$\$ if in tex mode) and to have , grouping thousands. \\
        !            55: \hline
        !            56:  
        !            57: \&roundto(\$x,\$n)  & Rounds a real number to n decimal points. \$x and \$n can be pure numbers \\
        !            58: \hline
        !            59:  
        !            60: \&web(``a'',''b'',''c'') or \&web(\$a,\$b,\$c)  & Returns either a, b or c depending on the output medium. a is for plain ASCII, b for tex output and c for html output \\
        !            61: \hline
        !            62:  
        !            63: \&html(``a'') or \&html(\$a)  & Output only if the output mode chosen is in html format \\
        !            64: \hline
        !            65:  
        !            66: \&j0(\$x), \&j1(\$x), \&jn(\$m,\$x), \&jv(\$y,\$x)  & Bessel functions of the first kind with orders 0, 1 and m respectively. For jn(m,x), m must be an integer whereas for jv(y,x), y is real. \$x can be a pure number. \$m must be an integer and can be a pure integer number. \$y can be a pure real number \\
        !            67: \hline
        !            68:  
        !            69: \&y0(\$x), \&y1(\$x), \&yn(\$m,\$x), \&yv(\$y,\$x)  & Bessel functions of the second kind with orders 0, 1 and m respectively. For yn(m,x), m must be an integer whereas for yv(y,x), y is real. \$x can be a pure number. \$m must be an integer and can be a pure integer number. \$y can be a pure real number \\
        !            70: \hline
        !            71:  
        !            72: \&random(\$l,\$u,\$d)  & Returns a uniformly distributed random number between the lower bound, l and upper bound, u in steps of d. \$l, \$u and \$d can be pure numbers \\
        !            73: \hline
        !            74:  
        !            75: \&choose(\$i,...)  & Choose the ith item from the argument list. i must be an integer greater than 0 and the value of i should not exceed the number of items. \$i can be a pure integer \\
        !            76: \hline
        !            77:  
        !            78: \parbox{6.49cm}{
        !            79: Option 1 - \&map(\$seed,[$\backslash$\$w,$\backslash$\$x,$\backslash$\$y,$\backslash$\$z],[\$a,\$b,\$c,\$d]) or !!
        !            80:  Option 2 - \&map(\$seed,$\backslash$@mappedArray,[\$a,\$b,\$c,\$d]) !!
        !            81:  Option 3 - @mappedArray = \&map(\$seed,[\$a,\$b,\$c,\$d]) !!
        !            82:  Option 4 - (\$w,\$x,\$y,\$z) = \&map(\$seed,$\backslash$@a) !!
        !            83:  where \$a='A'!!
        !            84:  \$b='B'!!
        !            85:  \$c='B'!! 
        !            86:  \$d='B'!! 
        !            87:  \$w, \$x, \$y, and \$z are variables } & Assigns to the variables \$w, \$x, \$y and \$z the values of the \$a, \$b, \$c and \$c (A, B, C and D). The precise value for \$w .. depends on the seed. (Option 1 of calling map). In option 2, the values of \$a, \$b .. are mapped into the array, @mappedArray. The two options illustrate the different grouping. Options 3 and 4 give a consistent way (with other functions) of mapping the items. For each option, the group can be passed as an array, for example, [\$a,\$b,\$c,\$d] =$>$ $\backslash$@a. \\
        !            88: \hline
        !            89:  
        !            90: \parbox{6.49cm}{Option 1 - \&rmap(\$seed,[$\backslash$\$w,$\backslash$\$x,$\backslash$\$y,$\backslash$\$z],[\$a,\$b,\$c,\$d]) or !! 
        !            91:  Option 2 - \&rmap(\$seed,$\backslash$@rmappedArray,[\$a,\$b,\$c,\$d]) !!
        !            92:  Option 3 - @rmapped\_array = \&rmap(\$seed,[\$a,\$b,\$c,\$d]) !!
        !            93:  Option 4 - (\$w,\$x,\$y,\$z) = \&rmap(\$seed,$\backslash$@a) !!
        !            94:  where \$a='A'!!
        !            95:  \$b='B'!!
        !            96:  \$c='B'!! 
        !            97:  \$d='B'!! 
        !            98:  \$w, \$x, \$y, and \$z are variables }  & The rmap functions does the reverse action of map if the same seed is used in calling map and rmap.  \\
        !            99: \hline
        !           100:  
        !           101: \$a=\&xmlparse(\$string)   & Runs the internal parser over the argument parsing for display. \textbf{Warning}
        !           102:  This will result in different strings in different targets. Don't use the results of this function as an answer. \\
        !           103: \hline
        !           104:  
        !           105: \&tex(\$a,\$b), \&tex(``a'',''b'')  & Returns a if the output mode is in tex otherwise returns b \\
        !           106: \hline
        !           107:  
        !           108: \&var\_in\_tex(\$a)  & Equivalent to tex(``a'',''``) \\
        !           109: \hline
        !           110:  
        !           111: \&to\_string(\$x), \&to\_string(\$x,\$y)  & If x is an integer, returns a string. If x is real than the output is a string with format given by y. For example, if x = 12.3456, \&to\_string(x,''.3F'') = 12.345 and \&to\_string(x,''.3E'') = 1.234E+01. \\
        !           112: \hline
        !           113:  
        !           114: \&class(), \&section()  & Returns null string, class descriptive name, section number, set number and null string. \\
        !           115: \hline
        !           116:  
        !           117: \&name(), \&student\_number()  & Return the full name in the following format: lastname, firstname initial. Student\_number returns the student 9-alphanumeric string. If undefined, the functions return null. \\
        !           118: \hline
        !           119:  
        !           120: \&open\_date(), \&due\_date(), \&answer\_date()  & Problem open date, due date and answer date. The time is also included in 24-hr format. \\
        !           121: \hline
        !           122:  
        !           123: Not implemented  & Get and set the random seed. \\
        !           124: \hline
        !           125:  
        !           126: \&sub\_string(\$a,\$b,\$c)
        !           127: perl  substr function. However, note the differences  & Retrieve a portion of string a starting from b and length c. For example,  \$a = ``Welcome to LON-CAPA''; \$result=\&sub\_string(\$a,4,4); then \$result is ``come'' \\
        !           128: \hline
        !           129:  
        !           130: @arrayname 
        !           131: Array is intrinsic in perl. To access a specific element use \$arrayname[\$n] where \$n is the \$n+1 element since the array count starts from 0  & ``xx'' can be a variable or a calculation. \\
        !           132: \hline
        !           133:  
        !           134: @B=\&array\_moments(@A)  & Evaluates the moments of an array A and place the result in array B[i] where i = 0 to 4. The contents of B are as follows: B[0] = number of elements, B[1] = mean, B[2] = variance, B[3] = skewness and B[4] = kurtosis. \\
        !           135: \hline
        !           136:  
        !           137: \&min(@Name), \&max(@Name)  & In LON-CAPA to find the maximum value of an array, use \&max(@arrayname)  and to find the minimum value of an array, use \&min(@arrayname) \\
        !           138: \hline
        !           139:  
        !           140: undef @name  & To destroy the contents of an array, use \\
        !           141: \hline
        !           142:  
        !           143: @return\_array=\&random\_normal (\$item\_cnt,\$seed,\$av,\$std\_dev)  & Generate \$item\_cnt deviates of normal distribution of average \$av and standard deviation \$std\_dev. The distribution is generated from seed \$seed \\
        !           144: \hline
        !           145:  
        !           146: @return\_array=\&random\_beta (\$item\_cnt,\$seed,\$aa,\$bb) 
        !           147:  NOTE: Both \$aa and \$bb MUST be greater than 1.0E-37.  & Generate \$item\_cnt deviates of beta distribution. The density of beta is: X\^{}(\$aa-1) *(1-X)\^{}(\$bb-1) /B(\$aa,\$bb) for 0$<$X$<$1. \\
        !           148: \hline
        !           149:  
        !           150: @return\_array=\&random\_gamma (\$item\_cnt,\$seed,\$a,\$r) 
        !           151:  NOTE: Both \$a and \$r MUST be positive.  & Generate \$item\_cnt deviates of gamma distribution. The density of gamma is: (\$a**\$r)/gamma(\$r) * X**(\$r-1) * exp(-\$a*X). \\
        !           152: \hline
        !           153:  
        !           154: @return\_array=\&random\_exponential (\$item\_cnt,\$seed,\$av) 
        !           155:  NOTE: \$av MUST be non-negative.  & Generate \$item\_cnt deviates of exponential distribution.  \\
        !           156: \hline
        !           157:  
        !           158: @return\_array=\&random\_poisson (\$item\_cnt,\$seed,\$mu) 
        !           159:  NOTE: \$mu MUST be non-negative.  & Generate \$item\_cnt deviates of poisson distribution.  \\
        !           160: \hline
        !           161:  
        !           162: @return\_array=\&random\_chi (\$item\_cnt,\$seed,\$df)  
        !           163:  NOTE: \$df MUST be positive.  & Generate \$item\_cnt deviates of chi\_square distribution with \$df degrees of freedom.  \\
        !           164: \hline
        !           165:  
        !           166: @return\_array=\&random\_noncentral\_chi (\$item\_cnt,\$seed,\$df,\$nonc) 
        !           167:  NOTE: \$df MUST be at least 1 and \$nonc MUST be non-negative.  & Generate \$item\_cnt deviates of noncentral\_chi\_square distribution with \$df degrees of freedom and noncentrality parameter \$nonc.  \\
        !           168: \hline
        !           169:  
        !           170: @return\_array=\&random\_f (\$item\_cnt,\$seed,\$dfn,\$dfd) 
        !           171:  NOTE: Both \$dfn and \$dfd MUST be positive.  & Generate \$item\_cnt deviates of F (variance ratio) distribution with degrees of freedom \$dfn (numerator) and \$dfd (denominator).  \\
        !           172: \hline
        !           173:  
        !           174: @return\_array=\&random\_noncentral\_f (\$item\_cnt,\$seed,\$dfn,\$dfd,\$nonc) 
        !           175:  NOTE: \$dfn must be at least 1, \$dfd MUST be positive, and \$nonc must be non-negative.  & Generate \$item\_cnt deviates of noncentral F (variance ratio) distribution with degrees of freedom \$dfn (numerator) and \$dfd (denominator). \$nonc is the noncentrality parameter.  \\
        !           176: \hline
        !           177:  
        !           178: @return\_array=\&random\_multivariate\_normal (\$item\_cnt,\$seed,$\backslash$@mean,$\backslash$@covar) 
        !           179:  NOTE: @mean should be of length p array of real numbers. @covar should be a length p array of references to length p arrays of real numbers (i.e. a p by p matrix.  & Generate \$item\_cnt deviates of multivariate\_normal distribution with mean vector @mean and variance-covariance matrix.  \\
        !           180: \hline
        !           181:  
        !           182: @return\_array=\&random\_multinomial (\$item\_cnt,\$seed,@p) 
        !           183:  NOTE: \$item\_cnt is rounded with int() and the result must be non-negative. The number of elements in @p must be at least 2.  & Returns single observation from multinomial distribution with \$item\_cnt events classified into as many categories as the length of @p. The probability of an event being classified into category i is given by ith element of @p. The observation is an array with length equal to @p, so when called in a scalar context it returns the length of @p. The sum of the elements of the obervation is equal to \$item\_cnt. \\
        !           184: \hline
        !           185:  
        !           186: @return\_array=\&random\_permutation (\$seed,@array)   & Returns @array randomly permuted. \\
        !           187: \hline
        !           188:  
        !           189: @return\_array=\&random\_uniform (\$item\_cnt,\$seed,\$low,\$high) 
        !           190:  NOTE: \$low must be less than or equal to \$high.  & Generate \$item\_cnt deviates from a uniform distribution.  \\
        !           191: \hline
        !           192:  
        !           193: @return\_array=\&random\_uniform\_integer (\$item\_cnt,\$seed,\$low,\$high) 
        !           194:  NOTE: \$low and \$high are both passed through int(). \$low must be less than or equal to \$high.  & Generate \$item\_cnt deviates from a uniform distribution in integers.  \\
        !           195: \hline
        !           196:  
        !           197: @return\_array=\&random\_binomial (\$item\_cnt,\$seed,\$nt,\$p) 
        !           198:  NOTE: \$nt is rounded using int() and the result must be non-negative. \$p must be between 0 and 1 inclusive.  & Generate \$item\_cnt deviates from the binomial distribution with \$nt trials and the probabilty of an event in each trial is \$p.  \\
        !           199: \hline
        !           200:  
        !           201: @return\_array=\&random\_negative\_binomial (\$item\_cnt,\$seed,\$ne,\$p) 
        !           202:  NOTE: \$ne is rounded using int() and the result must be positive. \$p must be between 0 and 1 exclusive.  & Generate an array of \$item\_cnt outcomes generated from negative binomial distribution with \$ne events and the probabilty of an event in each trial is \$p.  \\
        !           203: \hline
        !           204: \end{longtable}

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>