Annotation of loncom/html/adm/help/tex/Problem_LON-CAPA_Functions.tex, revision 1.30

1.1       bowersj2    1: \label{Problem_LON-CAPA_Functions}
                      2: 
                      3: \begin{longtable}{|p{8.5cm}|p{8.5cm}|}
                      4: \hline 
                      5:  \textbf{LON-CAPA Function }
                      6:  &\textbf{Description }
                      7:  \endhead
                      8:  \hline 
                      9: 
                     10: \&sin(\$x), \&cos(\$x), \&tan(\$x)  & Trigonometric functions where x is in radians. \$x can be a pure number, i.e., you can call \&sin(3.1415) \\
                     11: \hline
                     12:  
                     13: \&asin(\$x), \&acos(\$x), \&atan(\$x), \&atan2(\$y,\$x)  & Inverse trigonometric functions. Return value is in radians. For asin and acos the value of x must be between -1 and 1. The atan2 returns a value between -pi and pi the sign of which is determined by y. \$x and \$y can be pure numbers \\
                     14: \hline
                     15:  
                     16: \&log(\$x), \&log10(\$x)  & Natural and base-10 logarithm. \$x can be a pure number \\
                     17: \hline
                     18:  
                     19: \&exp(\$x), \&pow(\$x,\$y), \&sqrt(\$x)  & Exponential, power and square root, i.e.,ex, xy and /x. \$x and \$y can be pure numbers \\
                     20: \hline
                     21:  
                     22: \&abs(\$x), \&sgn(\$x)  & Abs takes the absolute value of x while sgn(x) returns 1, 0 or -1 depending on the value of x. For x$>$0, sgn(x) = 1, for x=0, sgn(x) = 0 and for x$<$0, sgn(x) = -1. \$x can be a pure number \\
                     23: \hline
                     24:  
1.6       www        25: \&erf(\$x), \&erfc(\$x)  & Error function.
                     26: erf = 2/sqrt(pi) integral (0,x) et-sq and \emph{ erfx(x)}
                     27:  = 1.0 - \emph{erf(x)}. \$x can be a pure number \\
1.1       bowersj2   28: \hline
                     29:  
                     30: \&ceil(\$x), \&floor(\$x)  & Ceil function returns an integer rounded up whereas floor function returns and integer rounded down. If x is an integer than it returns the value of the integer. \$x can be a pure number \\
                     31: \hline
                     32:  
                     33: \&min(...), \&max(...)  & Returns the minimum/ maximum value of a list of arguments if the arguments are numbers. If the arguments are strings then it returns a string sorted according to the ASCII codes \\
                     34: \hline
                     35:  
                     36: \&factorial(\$n)  & Argument (n) must be an integer else it will round down. The largest value for n is 170. \$n can be a pure number \\
                     37: \hline
                     38:  
                     39: \$N\%\$M  & N and M are integers and returns the remainder (in integer) of N/M. \$N and \$M can be pure numbers \\
                     40: \hline
                     41:  
                     42: \&sinh(\$x), \&cosh(\$x), \&tanh(\$x)  & Hyperbolic functions. \$x can be a pure number \\
                     43: \hline
                     44:  
                     45: \&asinh(\$x), \&acosh(\$x), \&atanh(\$x)  & Inverse hyperbolic functions. \$x can be a pure number \\
                     46: \hline
                     47:  
1.5       albertel   48: \&format(\$x,'nn')  & Display or format \$x as nn where nn is nF or nE or nS and n is an integer. \\
1.1       bowersj2   49: \hline
                     50:  
1.7       albertel   51: \&prettyprint(\$x,'nn','optional target') & Note that that tag $<$num$>$ can be used to do the same thing. Display or format \$x as nn where nn is nF or nE or nS and n is an integer. Also supports the first character being a \$, it then will format the result with a a call to \&dollarformat() described below. If the first character is a , it will format it with commas grouping the thousands. In S mode it will fromat the number to the specified number of significant figures and display it in F mode. In E mode it will attempt to generate a pretty x10\^{}3 rather than a E3 following the number, the 'optional target' argument is optional but can be used to force \&prettyprint to generate either 'tex' output, or 'web' output, most people do not need to specify this argument and can leave it blank.\\
1.1       bowersj2   52: \hline
                     53:  
1.6       www        54: \&dollarformat(\$x,'optional target')  & Reformats \$x to have a \$ (or $\backslash$\$ if in tex mode) and to have , grouping thousands. The 'optional target' argument is optional but can be used to force \&prettyprint to generate either 'tex' output, or 'web' output, most people do not need to specify this argument and can leave it blank.\\
1.1       bowersj2   55: \hline
1.11      albertel   56: 
                     57: \parbox{6.49cm}{
                     58: Option 1 - \$best = \&languages() \\
                     59: Option 2 - @all = \&languages() \\
                     60: Option 3 - \$best = \&languages($\backslash$@desired\_languages) \\
                     61: Option 4 - @all = \&languages($\backslash$@desired\_languages) \\
1.12      bisitz     62: }& Returns the best language to use, in the first two options returns the languages codes in the preference order of the user. In the second two examples returns the best matches from a list of desired language possibilities. \\
1.11      albertel   63: \hline
                     64: 
1.1       bowersj2   65: \&roundto(\$x,\$n)  & Rounds a real number to n decimal points. \$x and \$n can be pure numbers \\
                     66: \hline
                     67:  
1.24      bisitz     68: \&cas(\$s,\$e,\$l)&Evaluates the expression \$e inside the symbolic algebra system \$s. Currently, the Maxima symbolic math system ('maxima') and the R statistical computing system ('R') are implemented. 
                     69: \$l is an optional comma-separated list of libraries. Example: \&cas('maxima','diff(sin(x)/cos(x),x,2)')\\ 
1.9       albertel   70: \hline 
                     71: 
1.15      www        72: \&implicit\_multiplication(\$f)&Adds mathematical multiplication operators to the formula expression \$f where only implicit multiplication is used. Example: \&implicit\_multiplication('2(b+3c)') returns 2*(b+3*c) \\
1.12      bisitz     73: \hline
                     74: 
1.1       bowersj2   75: \&web(``a'',''b'',''c'') or \&web(\$a,\$b,\$c)  & Returns either a, b or c depending on the output medium. a is for plain ASCII, b for tex output and c for html output \\
                     76: \hline
                     77:  
                     78: \&html(``a'') or \&html(\$a)  & Output only if the output mode chosen is in html format \\
                     79: \hline
                     80:  
                     81: \&j0(\$x), \&j1(\$x), \&jn(\$m,\$x), \&jv(\$y,\$x)  & Bessel functions of the first kind with orders 0, 1 and m respectively. For jn(m,x), m must be an integer whereas for jv(y,x), y is real. \$x can be a pure number. \$m must be an integer and can be a pure integer number. \$y can be a pure real number \\
                     82: \hline
                     83:  
                     84: \&y0(\$x), \&y1(\$x), \&yn(\$m,\$x), \&yv(\$y,\$x)  & Bessel functions of the second kind with orders 0, 1 and m respectively. For yn(m,x), m must be an integer whereas for yv(y,x), y is real. \$x can be a pure number. \$m must be an integer and can be a pure integer number. \$y can be a pure real number \\
                     85: \hline
                     86:  
1.24      bisitz     87: \&random(\$l,\$u,\$d)  & Returns a uniformly distributed random number between the lower bound, l and upper bound, u in steps of d. d is optional. If omitted, a step of 1 is used. \$l, \$u and \$d can be pure numbers. \\
1.1       bowersj2   88: \hline
                     89:  
                     90: \&choose(\$i,...)  & Choose the ith item from the argument list. i must be an integer greater than 0 and the value of i should not exceed the number of items. \$i can be a pure integer \\
                     91: \hline
                     92:  
                     93: \parbox{6.49cm}{
1.2       bowersj2   94: Option 1 - \&map(\$seed,[$\backslash$\$w,$\backslash$\$x,$\backslash$\$y,$\backslash$\$z],[\$a,\$b,\$c,\$d]) or \\
                     95:  Option 2 - \&map(\$seed,$\backslash$@mappedArray,[\$a,\$b,\$c,\$d]) \\
                     96:  Option 3 - @mappedArray = \&map(\$seed,[\$a,\$b,\$c,\$d]) \\
                     97:  Option 4 - (\$w,\$x,\$y,\$z) = \&map(\$seed,$\backslash$@a) \\
1.4       albertel   98:  Option 5 - @Z = \&map(\$seed,$\backslash$@a) \\
1.2       bowersj2   99:  where \$a='A'\\
                    100:  \$b='B'\\
                    101:  \$c='B'\\ 
                    102:  \$d='B'\\ 
1.13      www       103:  \$w, \$x, \$y, and \$z are variables } & Assigns to the variables \$w, \$x, \$y and \$z the values of the \$a, \$b, \$c and \$c (A, B, C and D). The precise value for \$w .. depends on the seed. (Option 1 of calling map). In option 2, the values of \$a, \$b .. are mapped into the array, @mappedArray. The two options illustrate the different grouping. Options 3 and 4 give a consistent way (with other functions) of mapping the items. For each option, the group can be passed as an array, for example, [\$a,\$b,\$c,\$d] =$>$ $\backslash$@a. And Option 5 is the same as option 4, where the array of results is saved into a single array rather than an array of scalar variables.\\
1.1       bowersj2  104: \hline
                    105:  
1.2       bowersj2  106: \parbox{6.49cm}{Option 1 - \&rmap(\$seed,[$\backslash$\$w,$\backslash$\$x,$\backslash$\$y,$\backslash$\$z],[\$a,\$b,\$c,\$d]) or \\ 
                    107:  Option 2 - \&rmap(\$seed,$\backslash$@rmappedArray,[\$a,\$b,\$c,\$d]) \\
                    108:  Option 3 - @rmapped\_array = \&rmap(\$seed,[\$a,\$b,\$c,\$d]) \\
                    109:  Option 4 - (\$w,\$x,\$y,\$z) = \&rmap(\$seed,$\backslash$@a) \\
1.4       albertel  110:  Option 5 - @Z = \&map(\$seed,$\backslash$@a) \\
1.2       bowersj2  111:  where \$a='A'\\
                    112:  \$b='B'\\
                    113:  \$c='B'\\ 
                    114:  \$d='B'\\ 
1.1       bowersj2  115:  \$w, \$x, \$y, and \$z are variables }  & The rmap functions does the reverse action of map if the same seed is used in calling map and rmap.  \\
                    116: \hline
                    117:  
1.7       albertel  118: \$a=\&xmlparse(\$string)   & You probably should use the tag $<$parse$>$ instead of this function. Runs the internal parser over the argument parsing for display. \textbf{Warning}
1.1       bowersj2  119:  This will result in different strings in different targets. Don't use the results of this function as an answer. \\
                    120: \hline
                    121:  
                    122: \&tex(\$a,\$b), \&tex(``a'',''b'')  & Returns a if the output mode is in tex otherwise returns b \\
                    123: \hline
                    124:  
                    125: \&var\_in\_tex(\$a)  & Equivalent to tex(``a'',''``) \\
                    126: \hline
                    127:  
                    128: \&to\_string(\$x), \&to\_string(\$x,\$y)  & If x is an integer, returns a string. If x is real than the output is a string with format given by y. For example, if x = 12.3456, \&to\_string(x,''.3F'') = 12.345 and \&to\_string(x,''.3E'') = 1.234E+01. \\
                    129: \hline
                    130:  
1.20      www       131: \&class(), \&sec(), \&classid()  & Returns null string, class descriptive name, section number, class id, set number and null string. \\
1.1       bowersj2  132: \hline
                    133:  
1.20      www       134: \&name(), \&student\_number(), \&firstname(), \&middlename(), \&lastname()  & Return the full name in the following format: lastname, firstname initial. Student\_number returns the student 9-alphanumeric string. The functions firstname, middlename, and lastname return just that part of the name. If undefined, the functions return null. \\
1.1       bowersj2  135: \hline
1.24      bisitz    136: \&check\_status(\$partid) &Returns a number identifying the current status of a part. True values mean that a part is ``done'' (either unanswerable because of tries exhaustion, or correct) or a false value if a part can still be attempted. If \$part is unspecified, it will check either the current $<$part$>$'s status or if outside of a $<$part$>$, check the status of previous $<$part$>$. The full set of return codes are: 'undef' means it is unattempted, 0 means it is attempted and wrong but still has tries, 1 means it is marked correct, 2 means they have exceeded maximum number of tries, 3 means it is after the answer date.\\
1.5       albertel  137: \hline
1.17      www       138: \&open\_date(\$partid), \&due\_date(\$partid), \&answer\_date(\$partid)  & Problem open date, due date and answer date in local human-readable format.  Part 0 is chosen if \$partid is omitted.\\
1.1       bowersj2  139: \hline
1.17      www       140: \&open\_date\_epoch(\$partid), \&due\_date\_epoch((\$partid), \&answer\_date\_epoch((\$partid)  & Problem open date, due date and answer date in seconds after the 
                    141: epoch (UTC), which can be used in calculations.\\
                    142: \hline
                    143: 
1.30    ! raeburn   144: \&submission(\$partid,\$responseid,\$version,
        !           145: \$encode,\$cleanupnum) & Returns what the student submitted for response \$responseid in part \$partid. You can get these IDs from the XML-code of the problem. Use 0 as \$partid for problems without parts. \$version is optional and returns the \$version-th submission of the student that was graded. If \$version is 0 or ommitted, the latest submission is returned.
        !           146: \$encode is also optional and allows the author to explicitly encode the returned string. It's up to the author to take care of properly escaping all characters which might be interpreted by the browser.
        !           147: \$cleanupnum is also optional, and supports clean-up of the retrieved submission. 
        !           148: It is a reference to a hash, with one or more of the following:
        !           149: exponent =$>$ 1, 
        !           150: comma =$>$ 1,
        !           151: letterforzero =$>$ 1,
        !           152: spaces =$>$ 1,
        !           153: format =$>$ 'ns'
        !           154: (where n is an integer, i.e., number of significant digits). For example, to convert a student submission of
        !           155: 11,300 to 11300 include \{ comma =$>$ 1, \} as the fifth arg.\\
1.17      www       156: \hline
                    157: 
1.21      www       158: \&parameter\_setting(\$name,\$partid) & Returns the parameter setting \$name. Partid is optional.\\
                    159: \hline
                    160: 
                    161: \&stored\_data(\$name,\$partid) & Returns the stored data \$name. Partid is optional.\\
                    162: \hline
1.23      raeburn   163: \&wrong\_bubbles(\$correct,\$lower,\$upper,\$step,@given) & Returns an array that can be used for wrong answers in numerical responses. The first argument is the correct answer, the next arguments are the lower and upper boundaries for the bubbles, as well as the step size. The next argument is an 
1.22      www       164: optional array of wrong answers that should be included.\\
                    165: \hline 
1.21      www       166: 
1.17      www       167: \&currentpart() & 
                    168: Returns the ID of the current part.\\
                    169: \hline
                    170: 
1.1       bowersj2  171:  
                    172: Not implemented  & Get and set the random seed. \\
                    173: \hline
                    174:  
                    175: \&sub\_string(\$a,\$b,\$c)
1.6       www       176: perl substr function. However, note the differences  & Retrieve a portion of string a starting from b and length c. For example, \$a = ``Welcome to LON-CAPA''; \$result=\&sub\_string(\$a,4,4); then \$result is ``come'' \\
1.1       bowersj2  177: \hline
                    178:  
                    179: @arrayname 
                    180: Array is intrinsic in perl. To access a specific element use \$arrayname[\$n] where \$n is the \$n+1 element since the array count starts from 0  & ``xx'' can be a variable or a calculation. \\
                    181: \hline
                    182:  
                    183: @B=\&array\_moments(@A)  & Evaluates the moments of an array A and place the result in array B[i] where i = 0 to 4. The contents of B are as follows: B[0] = number of elements, B[1] = mean, B[2] = variance, B[3] = skewness and B[4] = kurtosis. \\
                    184: \hline
                    185:  
1.6       www       186: \&min(@Name), \&max(@Name)  & In LON-CAPA to find the maximum value of an array, use \&max(@arrayname) and to find the minimum value of an array, use \&min(@arrayname) \\
1.1       bowersj2  187: \hline
                    188:  
                    189: undef @name  & To destroy the contents of an array, use \\
                    190: \hline
                    191:  
                    192: @return\_array=\&random\_normal (\$item\_cnt,\$seed,\$av,\$std\_dev)  & Generate \$item\_cnt deviates of normal distribution of average \$av and standard deviation \$std\_dev. The distribution is generated from seed \$seed \\
                    193: \hline
                    194:  
                    195: @return\_array=\&random\_beta (\$item\_cnt,\$seed,\$aa,\$bb) 
                    196:  NOTE: Both \$aa and \$bb MUST be greater than 1.0E-37.  & Generate \$item\_cnt deviates of beta distribution. The density of beta is: X\^{}(\$aa-1) *(1-X)\^{}(\$bb-1) /B(\$aa,\$bb) for 0$<$X$<$1. \\
                    197: \hline
                    198:  
                    199: @return\_array=\&random\_gamma (\$item\_cnt,\$seed,\$a,\$r) 
                    200:  NOTE: Both \$a and \$r MUST be positive.  & Generate \$item\_cnt deviates of gamma distribution. The density of gamma is: (\$a**\$r)/gamma(\$r) * X**(\$r-1) * exp(-\$a*X). \\
                    201: \hline
                    202:  
                    203: @return\_array=\&random\_exponential (\$item\_cnt,\$seed,\$av) 
                    204:  NOTE: \$av MUST be non-negative.  & Generate \$item\_cnt deviates of exponential distribution.  \\
                    205: \hline
                    206:  
                    207: @return\_array=\&random\_poisson (\$item\_cnt,\$seed,\$mu) 
                    208:  NOTE: \$mu MUST be non-negative.  & Generate \$item\_cnt deviates of poisson distribution.  \\
                    209: \hline
                    210:  
                    211: @return\_array=\&random\_chi (\$item\_cnt,\$seed,\$df)  
                    212:  NOTE: \$df MUST be positive.  & Generate \$item\_cnt deviates of chi\_square distribution with \$df degrees of freedom.  \\
                    213: \hline
                    214:  
                    215: @return\_array=\&random\_noncentral\_chi (\$item\_cnt,\$seed,\$df,\$nonc) 
                    216:  NOTE: \$df MUST be at least 1 and \$nonc MUST be non-negative.  & Generate \$item\_cnt deviates of noncentral\_chi\_square distribution with \$df degrees of freedom and noncentrality parameter \$nonc.  \\
                    217: \hline
                    218:  
                    219: @return\_array=\&random\_f (\$item\_cnt,\$seed,\$dfn,\$dfd) 
                    220:  NOTE: Both \$dfn and \$dfd MUST be positive.  & Generate \$item\_cnt deviates of F (variance ratio) distribution with degrees of freedom \$dfn (numerator) and \$dfd (denominator).  \\
                    221: \hline
                    222:  
                    223: @return\_array=\&random\_noncentral\_f (\$item\_cnt,\$seed,\$dfn,\$dfd,\$nonc) 
                    224:  NOTE: \$dfn must be at least 1, \$dfd MUST be positive, and \$nonc must be non-negative.  & Generate \$item\_cnt deviates of noncentral F (variance ratio) distribution with degrees of freedom \$dfn (numerator) and \$dfd (denominator). \$nonc is the noncentrality parameter.  \\
                    225: \hline
                    226:  
                    227: @return\_array=\&random\_multivariate\_normal (\$item\_cnt,\$seed,$\backslash$@mean,$\backslash$@covar) 
                    228:  NOTE: @mean should be of length p array of real numbers. @covar should be a length p array of references to length p arrays of real numbers (i.e. a p by p matrix.  & Generate \$item\_cnt deviates of multivariate\_normal distribution with mean vector @mean and variance-covariance matrix.  \\
                    229: \hline
                    230:  
                    231: @return\_array=\&random\_multinomial (\$item\_cnt,\$seed,@p) 
                    232:  NOTE: \$item\_cnt is rounded with int() and the result must be non-negative. The number of elements in @p must be at least 2.  & Returns single observation from multinomial distribution with \$item\_cnt events classified into as many categories as the length of @p. The probability of an event being classified into category i is given by ith element of @p. The observation is an array with length equal to @p, so when called in a scalar context it returns the length of @p. The sum of the elements of the obervation is equal to \$item\_cnt. \\
                    233: \hline
                    234:  
                    235: @return\_array=\&random\_permutation (\$seed,@array)   & Returns @array randomly permuted. \\
                    236: \hline
                    237:  
                    238: @return\_array=\&random\_uniform (\$item\_cnt,\$seed,\$low,\$high) 
                    239:  NOTE: \$low must be less than or equal to \$high.  & Generate \$item\_cnt deviates from a uniform distribution.  \\
                    240: \hline
                    241:  
                    242: @return\_array=\&random\_uniform\_integer (\$item\_cnt,\$seed,\$low,\$high) 
                    243:  NOTE: \$low and \$high are both passed through int(). \$low must be less than or equal to \$high.  & Generate \$item\_cnt deviates from a uniform distribution in integers.  \\
                    244: \hline
                    245:  
                    246: @return\_array=\&random\_binomial (\$item\_cnt,\$seed,\$nt,\$p) 
                    247:  NOTE: \$nt is rounded using int() and the result must be non-negative. \$p must be between 0 and 1 inclusive.  & Generate \$item\_cnt deviates from the binomial distribution with \$nt trials and the probabilty of an event in each trial is \$p.  \\
                    248: \hline
                    249:  
                    250: @return\_array=\&random\_negative\_binomial (\$item\_cnt,\$seed,\$ne,\$p) 
                    251:  NOTE: \$ne is rounded using int() and the result must be positive. \$p must be between 0 and 1 exclusive.  & Generate an array of \$item\_cnt outcomes generated from negative binomial distribution with \$ne events and the probabilty of an event in each trial is \$p.  \\
                    252: \hline
                    253: \end{longtable}
1.25      lira      254: 
1.26      raeburn   255: The \&EXT() \index{\&EXT}external function is extremely powerful, and is used to access parameters 
                    256: and submission values.  It can be
                    257: used within scripts and also within cell formulas in the grading spreadsheet.
1.25      lira      258: Some examples can be found by browsing in the repository to /res/msu/albertel/test/ext\_examples.html.
1.26      raeburn   259: The \&EXT() function can be used to obtain values for the same parameters as are retrived by some of the other (newer) helper functions  
1.25      lira      260: summarized in the table above, such as \&firstname() which is equivalent to \&EXT(`environment.firstname'),
1.26      raeburn   261: and \&parameter\_setting(\$name,\$partid) is equivalent to \&EXT(`resource.'.\$partid.`.'.\$name).
1.27      lira      262: In such cases the newer (specialized) functions are preferred to \&EXT() on the basis of ease of use.
1.25      lira      263: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>