Annotation of loncom/xml/LCMathComplex.pm, revision 1.2

1.1       raeburn     1: #
                      2: # Complex numbers and associated mathematical functions
                      3: # -- Raphael Manfredi	Since Sep 1996
                      4: # -- Jarkko Hietaniemi	Since Mar 1997
                      5: # -- Daniel S. Lewart	Since Sep 1997
                      6: #
1.2     ! raeburn     7: # -- Stuart Raeburn: renamed package (rev. 1.55) as LCMathComplex Oct 2013
        !             8: #                    renamed package (rev. 1.59_01) as LCMathComplex Nov 2019
1.1       raeburn     9: #    with minor changes to allow use in Safe Space
                     10: #
                     11: 
                     12: package LONCAPA::LCMathComplex;
                     13: 
1.2     ! raeburn    14: { use 5.006; }
        !            15: use strict;
        !            16: 
        !            17: our $VERSION = 1.59_01;
1.1       raeburn    18: 
1.2     ! raeburn    19: our ($Inf, $ExpInf);
        !            20: our ($vax_float, $has_inf, $has_nan);
1.1       raeburn    21: 
                     22: BEGIN {
1.2     ! raeburn    23:     $vax_float = (pack("d",1) =~ /^[\x80\x10]\x40/);
        !            24:     $has_inf   = !$vax_float;
        !            25:     $has_nan   = !$vax_float;
        !            26: 
        !            27:     unless ($has_inf) {
        !            28:       # For example in vax, there is no Inf,
        !            29:       # and just mentioning the DBL_MAX (1.70141183460469229e+38)
        !            30:       # causes SIGFPE.
        !            31: 
        !            32:       # These are pretty useless without a real infinity,
        !            33:       # but setting them makes for less warnings about their
        !            34:       # undefined values.
        !            35:       $Inf = "Inf";
        !            36:       $ExpInf = "Inf";
        !            37:       return;
        !            38:     }
        !            39: 
        !            40:     my %DBL_MAX =  # These are IEEE 754 maxima.
1.1       raeburn    41: 	(
                     42: 	  4  => '1.70141183460469229e+38',
                     43: 	  8  => '1.7976931348623157e+308',
                     44: 	 # AFAICT the 10, 12, and 16-byte long doubles
                     45: 	 # all have the same maximum.
                     46: 	 10 => '1.1897314953572317650857593266280070162E+4932',
                     47: 	 12 => '1.1897314953572317650857593266280070162E+4932',
                     48: 	 16 => '1.1897314953572317650857593266280070162E+4932',
                     49: 	);
1.2     ! raeburn    50: 
1.1       raeburn    51:     my $nvsize = 8;
1.2     ! raeburn    52:     die "Math::Complex: Could not figure out nvsize\n"
1.1       raeburn    53: 	unless defined $nvsize;
                     54:     die "LONCAPA::LCMathComplex: Cannot not figure out max nv (nvsize = $nvsize)\n"
                     55: 	unless defined $DBL_MAX{$nvsize};
                     56:     my $DBL_MAX = eval $DBL_MAX{$nvsize};
                     57:     die "LONCAPA::LCMathComplex: Could not figure out max nv (nvsize = $nvsize)\n"
                     58: 	unless defined $DBL_MAX;
                     59:     my $BIGGER_THAN_THIS = 1e30;  # Must find something bigger than this.
                     60:     if ($^O eq 'unicosmk') {
                     61: 	$Inf = $DBL_MAX;
                     62:     } else {
1.2     ! raeburn    63: 	local $SIG{FPE} = sub { };
1.1       raeburn    64:         local $!;
                     65: 	# We do want an arithmetic overflow, Inf INF inf Infinity.
                     66: 	for my $t (
                     67: 	    'exp(99999)',  # Enough even with 128-bit long doubles.
                     68: 	    'inf',
                     69: 	    'Inf',
                     70: 	    'INF',
                     71: 	    'infinity',
                     72: 	    'Infinity',
                     73: 	    'INFINITY',
                     74: 	    '1e99999',
                     75: 	    ) {
                     76: 	    local $^W = 0;
                     77: 	    my $i = eval "$t+1.0";
                     78: 	    if (defined $i && $i > $BIGGER_THAN_THIS) {
                     79: 		$Inf = $i;
                     80: 		last;
                     81: 	    }
1.2     ! raeburn    82:           }
1.1       raeburn    83: 	$Inf = $DBL_MAX unless defined $Inf;  # Oh well, close enough.
                     84: 	die "LONCAPA::LCMathComplex: Could not get Infinity"
                     85: 	    unless $Inf > $BIGGER_THAN_THIS;
1.2     ! raeburn    86: 	$ExpInf = eval 'exp(99999)';
        !            87:       }
1.1       raeburn    88:     # print "# On this machine, Inf = '$Inf'\n";
                     89: }
                     90: 
1.2     ! raeburn    91: use warnings;
        !            92: no warnings 'syntax';  # To avoid the (_) warnings.
1.1       raeburn    93: 
                     94: my $i;
                     95: my %LOGN;
                     96: 
                     97: # Regular expression for floating point numbers.
                     98: # These days we could use Scalar::Util::lln(), I guess.
                     99: my $gre = qr'\s*([\+\-]?(?:(?:(?:\d+(?:_\d+)*(?:\.\d*(?:_\d+)*)?|\.\d+(?:_\d+)*)(?:[eE][\+\-]?\d+(?:_\d+)*)?))|inf)'i;
                    100: 
                    101: require Exporter;
                    102: 
1.2     ! raeburn   103: our @ISA = qw(Exporter);
1.1       raeburn   104: 
                    105: my @trig = qw(
                    106: 	      pi
                    107: 	      tan
                    108: 	      csc cosec sec cot cotan
                    109: 	      asin acos atan
                    110: 	      acsc acosec asec acot acotan
                    111: 	      sinh cosh tanh
                    112: 	      csch cosech sech coth cotanh
                    113: 	      asinh acosh atanh
                    114: 	      acsch acosech asech acoth acotanh
                    115: 	     );
                    116: 
1.2     ! raeburn   117: our @EXPORT = (qw(
1.1       raeburn   118: 	     i Re Im rho theta arg
                    119: 	     sqrt log ln
                    120: 	     log10 logn cbrt root
                    121: 	     cplx cplxe
                    122: 	     atan2
                    123: 	     ),
                    124: 	   @trig);
                    125: 
                    126: my @pi = qw(pi pi2 pi4 pip2 pip4 Inf);
                    127: 
1.2     ! raeburn   128: our @EXPORT_OK = @pi;
1.1       raeburn   129: 
1.2     ! raeburn   130: our %EXPORT_TAGS = (
1.1       raeburn   131:     'trig' => [@trig],
                    132:     'pi' => [@pi],
                    133: );
                    134: 
                    135: use overload
1.2     ! raeburn   136: 	'='	=> \&_copy,
        !           137: 	'+='	=> \&_plus,
1.1       raeburn   138: 	'+'	=> \&_plus,
1.2     ! raeburn   139: 	'-='	=> \&_minus,
1.1       raeburn   140: 	'-'	=> \&_minus,
1.2     ! raeburn   141: 	'*='	=> \&_multiply,
1.1       raeburn   142: 	'*'	=> \&_multiply,
1.2     ! raeburn   143: 	'/='	=> \&_divide,
1.1       raeburn   144: 	'/'	=> \&_divide,
1.2     ! raeburn   145: 	'**='	=> \&_power,
1.1       raeburn   146: 	'**'	=> \&_power,
                    147: 	'=='	=> \&_numeq,
                    148: 	'<=>'	=> \&_spaceship,
                    149: 	'neg'	=> \&_negate,
                    150: 	'~'	=> \&_conjugate,
                    151: 	'abs'	=> \&abs,
                    152: 	'sqrt'	=> \&sqrt,
                    153: 	'exp'	=> \&exp,
                    154: 	'log'	=> \&log,
                    155: 	'sin'	=> \&sin,
                    156: 	'cos'	=> \&cos,
                    157: 	'atan2'	=> \&atan2,
                    158:         '""'    => \&_stringify;
                    159: 
                    160: #
                    161: # Package "privates"
                    162: #
                    163: 
                    164: my %DISPLAY_FORMAT = ('style' => 'cartesian',
                    165: 		      'polar_pretty_print' => 1);
                    166: my $eps            = 1e-14;		# Epsilon
                    167: 
                    168: #
                    169: # Object attributes (internal):
                    170: #	cartesian	[real, imaginary] -- cartesian form
                    171: #	polar		[rho, theta] -- polar form
                    172: #	c_dirty		cartesian form not up-to-date
                    173: #	p_dirty		polar form not up-to-date
                    174: #	display		display format (package's global when not set)
                    175: #
                    176: 
                    177: # Die on bad *make() arguments.
                    178: 
                    179: sub _cannot_make {
                    180:     die "@{[(caller(1))[3]]}: Cannot take $_[0] of '$_[1]'.\n";
                    181: }
                    182: 
                    183: sub _make {
                    184:     my $arg = shift;
                    185:     my ($p, $q);
                    186: 
                    187:     if ($arg =~ /^$gre$/) {
                    188: 	($p, $q) = ($1, 0);
                    189:     } elsif ($arg =~ /^(?:$gre)?$gre\s*i\s*$/) {
                    190: 	($p, $q) = ($1 || 0, $2);
                    191:     } elsif ($arg =~ /^\s*\(\s*$gre\s*(?:,\s*$gre\s*)?\)\s*$/) {
                    192: 	($p, $q) = ($1, $2 || 0);
                    193:     }
                    194: 
                    195:     if (defined $p) {
                    196: 	$p =~ s/^\+//;
1.2     ! raeburn   197: 	$p =~ s/^(-?)inf$/"${1}9**9**9"/e if $has_inf;
1.1       raeburn   198: 	$q =~ s/^\+//;
1.2     ! raeburn   199: 	$q =~ s/^(-?)inf$/"${1}9**9**9"/e if $has_inf;
1.1       raeburn   200:     }
                    201: 
                    202:     return ($p, $q);
                    203: }
                    204: 
                    205: sub _emake {
                    206:     my $arg = shift;
                    207:     my ($p, $q);
                    208: 
                    209:     if ($arg =~ /^\s*\[\s*$gre\s*(?:,\s*$gre\s*)?\]\s*$/) {
                    210: 	($p, $q) = ($1, $2 || 0);
                    211:     } elsif ($arg =~ m!^\s*\[\s*$gre\s*(?:,\s*([-+]?\d*\s*)?pi(?:/\s*(\d+))?\s*)?\]\s*$!) {
                    212: 	($p, $q) = ($1, ($2 eq '-' ? -1 : ($2 || 1)) * pi() / ($3 || 1));
                    213:     } elsif ($arg =~ /^\s*\[\s*$gre\s*\]\s*$/) {
                    214: 	($p, $q) = ($1, 0);
                    215:     } elsif ($arg =~ /^\s*$gre\s*$/) {
                    216: 	($p, $q) = ($1, 0);
                    217:     }
                    218: 
                    219:     if (defined $p) {
                    220: 	$p =~ s/^\+//;
                    221: 	$q =~ s/^\+//;
1.2     ! raeburn   222: 	$p =~ s/^(-?)inf$/"${1}9**9**9"/e if $has_inf;
        !           223: 	$q =~ s/^(-?)inf$/"${1}9**9**9"/e if $has_inf;
1.1       raeburn   224:     }
                    225: 
                    226:     return ($p, $q);
                    227: }
                    228: 
1.2     ! raeburn   229: sub _copy {
        !           230:     my $self = shift;
        !           231:     my $clone = {%$self};
        !           232:     if ($self->{'cartesian'}) {
        !           233: 	$clone->{'cartesian'} = [@{$self->{'cartesian'}}];
        !           234:     }
        !           235:     if ($self->{'polar'}) {
        !           236: 	$clone->{'polar'} = [@{$self->{'polar'}}];
        !           237:     }
        !           238:     bless $clone,__PACKAGE__;
        !           239:     return $clone;
        !           240: }
        !           241: 
1.1       raeburn   242: #
                    243: # ->make
                    244: #
                    245: # Create a new complex number (cartesian form)
                    246: #
                    247: sub make {
                    248:     my $self = bless {}, shift;
                    249:     my ($re, $im);
                    250:     if (@_ == 0) {
                    251: 	($re, $im) = (0, 0);
                    252:     } elsif (@_ == 1) {
                    253: 	return (ref $self)->emake($_[0])
                    254: 	    if ($_[0] =~ /^\s*\[/);
                    255: 	($re, $im) = _make($_[0]);
                    256:     } elsif (@_ == 2) {
                    257: 	($re, $im) = @_;
                    258:     }
                    259:     if (defined $re) {
                    260: 	_cannot_make("real part",      $re) unless $re =~ /^$gre$/;
                    261:     }
                    262:     $im ||= 0;
                    263:     _cannot_make("imaginary part", $im) unless $im =~ /^$gre$/;
                    264:     $self->_set_cartesian([$re, $im ]);
                    265:     $self->display_format('cartesian');
                    266: 
                    267:     return $self;
                    268: }
                    269: 
                    270: #
                    271: # ->emake
                    272: #
                    273: # Create a new complex number (exponential form)
                    274: #
                    275: sub emake {
                    276:     my $self = bless {}, shift;
                    277:     my ($rho, $theta);
                    278:     if (@_ == 0) {
                    279: 	($rho, $theta) = (0, 0);
                    280:     } elsif (@_ == 1) {
                    281: 	return (ref $self)->make($_[0])
                    282: 	    if ($_[0] =~ /^\s*\(/ || $_[0] =~ /i\s*$/);
                    283: 	($rho, $theta) = _emake($_[0]);
                    284:     } elsif (@_ == 2) {
                    285: 	($rho, $theta) = @_;
                    286:     }
                    287:     if (defined $rho && defined $theta) {
                    288: 	if ($rho < 0) {
                    289: 	    $rho   = -$rho;
                    290: 	    $theta = ($theta <= 0) ? $theta + pi() : $theta - pi();
                    291: 	}
                    292:     }
                    293:     if (defined $rho) {
                    294: 	_cannot_make("rho",   $rho)   unless $rho   =~ /^$gre$/;
                    295:     }
                    296:     $theta ||= 0;
                    297:     _cannot_make("theta", $theta) unless $theta =~ /^$gre$/;
                    298:     $self->_set_polar([$rho, $theta]);
                    299:     $self->display_format('polar');
                    300: 
                    301:     return $self;
                    302: }
                    303: 
                    304: sub new { &make }		# For backward compatibility only.
                    305: 
                    306: #
                    307: # cplx
                    308: #
                    309: # Creates a complex number from a (re, im) tuple.
                    310: # This avoids the burden of writing LONCAPA::LCMathComplex->make(re, im).
                    311: #
                    312: sub cplx {
                    313: 	return __PACKAGE__->make(@_);
                    314: }
                    315: 
                    316: #
                    317: # cplxe
                    318: #
                    319: # Creates a complex number from a (rho, theta) tuple.
                    320: # This avoids the burden of writing LONCAPA::LCMathComplex->emake(rho, theta).
                    321: #
                    322: sub cplxe {
                    323: 	return __PACKAGE__->emake(@_);
                    324: }
                    325: 
                    326: #
                    327: # pi
                    328: #
                    329: # The number defined as pi = 180 degrees
                    330: #
                    331: sub pi () { 4 * CORE::atan2(1, 1) }
                    332: 
                    333: #
                    334: # pi2
                    335: #
                    336: # The full circle
                    337: #
                    338: sub pi2 () { 2 * pi }
                    339: 
                    340: #
                    341: # pi4
                    342: #
                    343: # The full circle twice.
                    344: #
                    345: sub pi4 () { 4 * pi }
                    346: 
                    347: #
                    348: # pip2
                    349: #
                    350: # The quarter circle
                    351: #
                    352: sub pip2 () { pi / 2 }
                    353: 
                    354: #
                    355: # pip4
                    356: #
                    357: # The eighth circle.
                    358: #
                    359: sub pip4 () { pi / 4 }
                    360: 
                    361: #
                    362: # _uplog10
                    363: #
                    364: # Used in log10().
                    365: #
                    366: sub _uplog10 () { 1 / CORE::log(10) }
                    367: 
                    368: #
                    369: # i
                    370: #
                    371: # The number defined as i*i = -1;
                    372: #
                    373: sub i () {
                    374:         return $i if ($i);
                    375: 	$i = bless {};
                    376: 	$i->{'cartesian'} = [0, 1];
                    377: 	$i->{'polar'}     = [1, pip2];
                    378: 	$i->{c_dirty} = 0;
                    379: 	$i->{p_dirty} = 0;
                    380: 	return $i;
                    381: }
                    382: 
                    383: #
                    384: # _ip2
                    385: #
                    386: # Half of i.
                    387: #
                    388: sub _ip2 () { i / 2 }
                    389: 
                    390: #
                    391: # Attribute access/set routines
                    392: #
                    393: 
                    394: sub _cartesian {$_[0]->{c_dirty} ?
                    395: 		   $_[0]->_update_cartesian : $_[0]->{'cartesian'}}
                    396: sub _polar     {$_[0]->{p_dirty} ?
                    397: 		   $_[0]->_update_polar : $_[0]->{'polar'}}
                    398: 
                    399: sub _set_cartesian { $_[0]->{p_dirty}++; $_[0]->{c_dirty} = 0;
                    400: 		     $_[0]->{'cartesian'} = $_[1] }
                    401: sub _set_polar     { $_[0]->{c_dirty}++; $_[0]->{p_dirty} = 0;
                    402: 		     $_[0]->{'polar'} = $_[1] }
                    403: 
                    404: #
                    405: # ->_update_cartesian
                    406: #
                    407: # Recompute and return the cartesian form, given accurate polar form.
                    408: #
                    409: sub _update_cartesian {
                    410: 	my $self = shift;
                    411: 	my ($r, $t) = @{$self->{'polar'}};
                    412: 	$self->{c_dirty} = 0;
                    413: 	return $self->{'cartesian'} = [$r * CORE::cos($t), $r * CORE::sin($t)];
                    414: }
                    415: 
                    416: #
                    417: #
                    418: # ->_update_polar
                    419: #
                    420: # Recompute and return the polar form, given accurate cartesian form.
                    421: #
                    422: sub _update_polar {
                    423: 	my $self = shift;
                    424: 	my ($x, $y) = @{$self->{'cartesian'}};
                    425: 	$self->{p_dirty} = 0;
                    426: 	return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0;
                    427: 	return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y),
                    428: 				   CORE::atan2($y, $x)];
                    429: }
                    430: 
                    431: #
                    432: # (_plus)
                    433: #
                    434: # Computes z1+z2.
                    435: #
                    436: sub _plus {
                    437: 	my ($z1, $z2, $regular) = @_;
                    438: 	my ($re1, $im1) = @{$z1->_cartesian};
                    439: 	$z2 = cplx($z2) unless ref $z2;
                    440: 	my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
                    441: 	unless (defined $regular) {
                    442: 		$z1->_set_cartesian([$re1 + $re2, $im1 + $im2]);
                    443: 		return $z1;
                    444: 	}
                    445: 	return (ref $z1)->make($re1 + $re2, $im1 + $im2);
                    446: }
                    447: 
                    448: #
                    449: # (_minus)
                    450: #
                    451: # Computes z1-z2.
                    452: #
                    453: sub _minus {
                    454: 	my ($z1, $z2, $inverted) = @_;
                    455: 	my ($re1, $im1) = @{$z1->_cartesian};
                    456: 	$z2 = cplx($z2) unless ref $z2;
                    457: 	my ($re2, $im2) = @{$z2->_cartesian};
                    458: 	unless (defined $inverted) {
                    459: 		$z1->_set_cartesian([$re1 - $re2, $im1 - $im2]);
                    460: 		return $z1;
                    461: 	}
                    462: 	return $inverted ?
                    463: 		(ref $z1)->make($re2 - $re1, $im2 - $im1) :
                    464: 		(ref $z1)->make($re1 - $re2, $im1 - $im2);
                    465: 
                    466: }
                    467: 
                    468: #
                    469: # (_multiply)
                    470: #
                    471: # Computes z1*z2.
                    472: #
                    473: sub _multiply {
                    474:         my ($z1, $z2, $regular) = @_;
                    475: 	if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) {
                    476: 	    # if both polar better use polar to avoid rounding errors
                    477: 	    my ($r1, $t1) = @{$z1->_polar};
                    478: 	    my ($r2, $t2) = @{$z2->_polar};
                    479: 	    my $t = $t1 + $t2;
                    480: 	    if    ($t >   pi()) { $t -= pi2 }
                    481: 	    elsif ($t <= -pi()) { $t += pi2 }
                    482: 	    unless (defined $regular) {
                    483: 		$z1->_set_polar([$r1 * $r2, $t]);
                    484: 		return $z1;
                    485: 	    }
                    486: 	    return (ref $z1)->emake($r1 * $r2, $t);
                    487: 	} else {
                    488: 	    my ($x1, $y1) = @{$z1->_cartesian};
                    489: 	    if (ref $z2) {
                    490: 		my ($x2, $y2) = @{$z2->_cartesian};
                    491: 		return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2);
                    492: 	    } else {
                    493: 		return (ref $z1)->make($x1*$z2, $y1*$z2);
                    494: 	    }
                    495: 	}
                    496: }
                    497: 
                    498: #
                    499: # _divbyzero
                    500: #
                    501: # Die on division by zero.
                    502: #
                    503: sub _divbyzero {
                    504:     my $mess = "$_[0]: Division by zero.\n";
                    505: 
                    506:     if (defined $_[1]) {
                    507: 	$mess .= "(Because in the definition of $_[0], the divisor ";
                    508: 	$mess .= "$_[1] " unless ("$_[1]" eq '0');
                    509: 	$mess .= "is 0)\n";
                    510:     }
                    511: 
                    512:     my @up = caller(1);
                    513: 
                    514:     $mess .= "Died at $up[1] line $up[2].\n";
                    515: 
                    516:     die $mess;
                    517: }
                    518: 
                    519: #
                    520: # (_divide)
                    521: #
                    522: # Computes z1/z2.
                    523: #
                    524: sub _divide {
                    525: 	my ($z1, $z2, $inverted) = @_;
                    526: 	if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) {
                    527: 	    # if both polar better use polar to avoid rounding errors
                    528: 	    my ($r1, $t1) = @{$z1->_polar};
                    529: 	    my ($r2, $t2) = @{$z2->_polar};
                    530: 	    my $t;
                    531: 	    if ($inverted) {
                    532: 		_divbyzero "$z2/0" if ($r1 == 0);
                    533: 		$t = $t2 - $t1;
                    534: 		if    ($t >   pi()) { $t -= pi2 }
                    535: 		elsif ($t <= -pi()) { $t += pi2 }
                    536: 		return (ref $z1)->emake($r2 / $r1, $t);
                    537: 	    } else {
                    538: 		_divbyzero "$z1/0" if ($r2 == 0);
                    539: 		$t = $t1 - $t2;
                    540: 		if    ($t >   pi()) { $t -= pi2 }
                    541: 		elsif ($t <= -pi()) { $t += pi2 }
                    542: 		return (ref $z1)->emake($r1 / $r2, $t);
                    543: 	    }
                    544: 	} else {
                    545: 	    my ($d, $x2, $y2);
                    546: 	    if ($inverted) {
                    547: 		($x2, $y2) = @{$z1->_cartesian};
                    548: 		$d = $x2*$x2 + $y2*$y2;
                    549: 		_divbyzero "$z2/0" if $d == 0;
                    550: 		return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d);
                    551: 	    } else {
                    552: 		my ($x1, $y1) = @{$z1->_cartesian};
                    553: 		if (ref $z2) {
                    554: 		    ($x2, $y2) = @{$z2->_cartesian};
                    555: 		    $d = $x2*$x2 + $y2*$y2;
                    556: 		    _divbyzero "$z1/0" if $d == 0;
                    557: 		    my $u = ($x1*$x2 + $y1*$y2)/$d;
                    558: 		    my $v = ($y1*$x2 - $x1*$y2)/$d;
                    559: 		    return (ref $z1)->make($u, $v);
                    560: 		} else {
                    561: 		    _divbyzero "$z1/0" if $z2 == 0;
                    562: 		    return (ref $z1)->make($x1/$z2, $y1/$z2);
                    563: 		}
                    564: 	    }
                    565: 	}
                    566: }
                    567: 
                    568: #
                    569: # (_power)
                    570: #
                    571: # Computes z1**z2 = exp(z2 * log z1)).
                    572: #
                    573: sub _power {
                    574: 	my ($z1, $z2, $inverted) = @_;
                    575: 	if ($inverted) {
                    576: 	    return 1 if $z1 == 0 || $z2 == 1;
                    577: 	    return 0 if $z2 == 0 && Re($z1) > 0;
                    578: 	} else {
                    579: 	    return 1 if $z2 == 0 || $z1 == 1;
                    580: 	    return 0 if $z1 == 0 && Re($z2) > 0;
                    581: 	}
                    582: 	my $w = $inverted ? &exp($z1 * &log($z2))
                    583: 	                  : &exp($z2 * &log($z1));
                    584: 	# If both arguments cartesian, return cartesian, else polar.
                    585: 	return $z1->{c_dirty} == 0 &&
                    586: 	       (not ref $z2 or $z2->{c_dirty} == 0) ?
                    587: 	       cplx(@{$w->_cartesian}) : $w;
                    588: }
                    589: 
                    590: #
                    591: # (_spaceship)
                    592: #
                    593: # Computes z1 <=> z2.
                    594: # Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i.
                    595: #
                    596: sub _spaceship {
                    597: 	my ($z1, $z2, $inverted) = @_;
                    598: 	my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
                    599: 	my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
                    600: 	my $sgn = $inverted ? -1 : 1;
                    601: 	return $sgn * ($re1 <=> $re2) if $re1 != $re2;
                    602: 	return $sgn * ($im1 <=> $im2);
                    603: }
                    604: 
                    605: #
                    606: # (_numeq)
                    607: #
                    608: # Computes z1 == z2.
                    609: #
                    610: # (Required in addition to _spaceship() because of NaNs.)
                    611: sub _numeq {
                    612: 	my ($z1, $z2, $inverted) = @_;
                    613: 	my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
                    614: 	my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
                    615: 	return $re1 == $re2 && $im1 == $im2 ? 1 : 0;
                    616: }
                    617: 
                    618: #
                    619: # (_negate)
                    620: #
                    621: # Computes -z.
                    622: #
                    623: sub _negate {
                    624: 	my ($z) = @_;
                    625: 	if ($z->{c_dirty}) {
                    626: 		my ($r, $t) = @{$z->_polar};
                    627: 		$t = ($t <= 0) ? $t + pi : $t - pi;
                    628: 		return (ref $z)->emake($r, $t);
                    629: 	}
                    630: 	my ($re, $im) = @{$z->_cartesian};
                    631: 	return (ref $z)->make(-$re, -$im);
                    632: }
                    633: 
                    634: #
                    635: # (_conjugate)
                    636: #
                    637: # Compute complex's _conjugate.
                    638: #
                    639: sub _conjugate {
                    640: 	my ($z) = @_;
                    641: 	if ($z->{c_dirty}) {
                    642: 		my ($r, $t) = @{$z->_polar};
                    643: 		return (ref $z)->emake($r, -$t);
                    644: 	}
                    645: 	my ($re, $im) = @{$z->_cartesian};
                    646: 	return (ref $z)->make($re, -$im);
                    647: }
                    648: 
                    649: #
                    650: # (abs)
                    651: #
                    652: # Compute or set complex's norm (rho).
                    653: #
                    654: sub abs {
1.2     ! raeburn   655: 	my ($z, $rho) = @_ ? @_ : $_;
1.1       raeburn   656: 	unless (ref $z) {
                    657: 	    if (@_ == 2) {
                    658: 		$_[0] = $_[1];
                    659: 	    } else {
                    660: 		return CORE::abs($z);
                    661: 	    }
                    662: 	}
                    663: 	if (defined $rho) {
                    664: 	    $z->{'polar'} = [ $rho, ${$z->_polar}[1] ];
                    665: 	    $z->{p_dirty} = 0;
                    666: 	    $z->{c_dirty} = 1;
                    667: 	    return $rho;
                    668: 	} else {
                    669: 	    return ${$z->_polar}[0];
                    670: 	}
                    671: }
                    672: 
                    673: sub _theta {
                    674:     my $theta = $_[0];
                    675: 
                    676:     if    ($$theta >   pi()) { $$theta -= pi2 }
                    677:     elsif ($$theta <= -pi()) { $$theta += pi2 }
                    678: }
                    679: 
                    680: #
                    681: # arg
                    682: #
                    683: # Compute or set complex's argument (theta).
                    684: #
                    685: sub arg {
                    686: 	my ($z, $theta) = @_;
                    687: 	return $z unless ref $z;
                    688: 	if (defined $theta) {
                    689: 	    _theta(\$theta);
                    690: 	    $z->{'polar'} = [ ${$z->_polar}[0], $theta ];
                    691: 	    $z->{p_dirty} = 0;
                    692: 	    $z->{c_dirty} = 1;
                    693: 	} else {
                    694: 	    $theta = ${$z->_polar}[1];
                    695: 	    _theta(\$theta);
                    696: 	}
                    697: 	return $theta;
                    698: }
                    699: 
                    700: #
                    701: # (sqrt)
                    702: #
                    703: # Compute sqrt(z).
                    704: #
                    705: # It is quite tempting to use wantarray here so that in list context
                    706: # sqrt() would return the two solutions.  This, however, would
                    707: # break things like
                    708: #
                    709: #	print "sqrt(z) = ", sqrt($z), "\n";
                    710: #
                    711: # The two values would be printed side by side without no intervening
                    712: # whitespace, quite confusing.
                    713: # Therefore if you want the two solutions use the root().
                    714: #
                    715: sub sqrt {
1.2     ! raeburn   716: 	my ($z) = @_ ? $_[0] : $_;
1.1       raeburn   717: 	my ($re, $im) = ref $z ? @{$z->_cartesian} : ($z, 0);
                    718: 	return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re)
                    719: 	    if $im == 0;
                    720: 	my ($r, $t) = @{$z->_polar};
                    721: 	return (ref $z)->emake(CORE::sqrt($r), $t/2);
                    722: }
                    723: 
                    724: #
                    725: # cbrt
                    726: #
                    727: # Compute cbrt(z) (cubic root).
                    728: #
                    729: # Why are we not returning three values?  The same answer as for sqrt().
                    730: #
                    731: sub cbrt {
                    732: 	my ($z) = @_;
                    733: 	return $z < 0 ?
                    734: 	    -CORE::exp(CORE::log(-$z)/3) :
                    735: 		($z > 0 ? CORE::exp(CORE::log($z)/3): 0)
                    736: 	    unless ref $z;
                    737: 	my ($r, $t) = @{$z->_polar};
                    738: 	return 0 if $r == 0;
                    739: 	return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3);
                    740: }
                    741: 
                    742: #
                    743: # _rootbad
                    744: #
                    745: # Die on bad root.
                    746: #
                    747: sub _rootbad {
                    748:     my $mess = "Root '$_[0]' illegal, root rank must be positive integer.\n";
                    749: 
                    750:     my @up = caller(1);
                    751: 
                    752:     $mess .= "Died at $up[1] line $up[2].\n";
                    753: 
                    754:     die $mess;
                    755: }
                    756: 
                    757: #
                    758: # root
                    759: #
                    760: # Computes all nth root for z, returning an array whose size is n.
                    761: # `n' must be a positive integer.
                    762: #
                    763: # The roots are given by (for k = 0..n-1):
                    764: #
                    765: # z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n))
                    766: #
                    767: sub root {
                    768: 	my ($z, $n, $k) = @_;
                    769: 	_rootbad($n) if ($n < 1 or int($n) != $n);
                    770: 	my ($r, $t) = ref $z ?
                    771: 	    @{$z->_polar} : (CORE::abs($z), $z >= 0 ? 0 : pi);
                    772: 	my $theta_inc = pi2 / $n;
                    773: 	my $rho = $r ** (1/$n);
                    774: 	my $cartesian = ref $z && $z->{c_dirty} == 0;
                    775: 	if (@_ == 2) {
                    776: 	    my @root;
                    777: 	    for (my $i = 0, my $theta = $t / $n;
                    778: 		 $i < $n;
                    779: 		 $i++, $theta += $theta_inc) {
                    780: 		my $w = cplxe($rho, $theta);
                    781: 		# Yes, $cartesian is loop invariant.
                    782: 		push @root, $cartesian ? cplx(@{$w->_cartesian}) : $w;
                    783: 	    }
                    784: 	    return @root;
                    785: 	} elsif (@_ == 3) {
                    786: 	    my $w = cplxe($rho, $t / $n + $k * $theta_inc);
                    787: 	    return $cartesian ? cplx(@{$w->_cartesian}) : $w;
                    788: 	}
                    789: }
                    790: 
                    791: #
                    792: # Re
                    793: #
                    794: # Return or set Re(z).
                    795: #
                    796: sub Re {
                    797: 	my ($z, $Re) = @_;
                    798: 	return $z unless ref $z;
                    799: 	if (defined $Re) {
                    800: 	    $z->{'cartesian'} = [ $Re, ${$z->_cartesian}[1] ];
                    801: 	    $z->{c_dirty} = 0;
                    802: 	    $z->{p_dirty} = 1;
                    803: 	} else {
                    804: 	    return ${$z->_cartesian}[0];
                    805: 	}
                    806: }
                    807: 
                    808: #
                    809: # Im
                    810: #
                    811: # Return or set Im(z).
                    812: #
                    813: sub Im {
                    814: 	my ($z, $Im) = @_;
                    815: 	return 0 unless ref $z;
                    816: 	if (defined $Im) {
                    817: 	    $z->{'cartesian'} = [ ${$z->_cartesian}[0], $Im ];
                    818: 	    $z->{c_dirty} = 0;
                    819: 	    $z->{p_dirty} = 1;
                    820: 	} else {
                    821: 	    return ${$z->_cartesian}[1];
                    822: 	}
                    823: }
                    824: 
                    825: #
                    826: # rho
                    827: #
                    828: # Return or set rho(w).
                    829: #
                    830: sub rho {
                    831:     LONCAPA::LCMathComplex::abs(@_);
                    832: }
                    833: 
                    834: #
                    835: # theta
                    836: #
                    837: # Return or set theta(w).
                    838: #
                    839: sub theta {
                    840:     LONCAPA::LCMathComplex::arg(@_);
                    841: }
                    842: 
                    843: #
                    844: # (exp)
                    845: #
                    846: # Computes exp(z).
                    847: #
                    848: sub exp {
1.2     ! raeburn   849:     my ($z) = @_ ? @_ : $_;
        !           850:     return CORE::exp($z) unless ref $z;
        !           851:     my ($x, $y) = @{$z->_cartesian};
        !           852:     return (ref $z)->emake(CORE::exp($x), $y);
1.1       raeburn   853: }
                    854: 
                    855: #
                    856: # _logofzero
                    857: #
                    858: # Die on logarithm of zero.
                    859: #
                    860: sub _logofzero {
                    861:     my $mess = "$_[0]: Logarithm of zero.\n";
                    862: 
                    863:     if (defined $_[1]) {
                    864: 	$mess .= "(Because in the definition of $_[0], the argument ";
                    865: 	$mess .= "$_[1] " unless ($_[1] eq '0');
                    866: 	$mess .= "is 0)\n";
                    867:     }
                    868: 
                    869:     my @up = caller(1);
                    870: 
                    871:     $mess .= "Died at $up[1] line $up[2].\n";
                    872: 
                    873:     die $mess;
                    874: }
                    875: 
                    876: #
                    877: # (log)
                    878: #
                    879: # Compute log(z).
                    880: #
                    881: sub log {
1.2     ! raeburn   882: 	my ($z) = @_ ? @_ : $_;
1.1       raeburn   883: 	unless (ref $z) {
                    884: 	    _logofzero("log") if $z == 0;
                    885: 	    return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi);
                    886: 	}
                    887: 	my ($r, $t) = @{$z->_polar};
                    888: 	_logofzero("log") if $r == 0;
                    889: 	if    ($t >   pi()) { $t -= pi2 }
                    890: 	elsif ($t <= -pi()) { $t += pi2 }
                    891: 	return (ref $z)->make(CORE::log($r), $t);
                    892: }
                    893: 
                    894: #
                    895: # ln
                    896: #
                    897: # Alias for log().
                    898: #
                    899: sub ln { LONCAPA::LCMathComplex::log(@_) }
                    900: 
                    901: #
                    902: # log10
                    903: #
                    904: # Compute log10(z).
                    905: #
                    906: 
                    907: sub log10 {
                    908: 	return LONCAPA::LCMathComplex::log($_[0]) * _uplog10;
                    909: }
                    910: 
                    911: #
                    912: # logn
                    913: #
                    914: # Compute logn(z,n) = log(z) / log(n)
                    915: #
                    916: sub logn {
                    917: 	my ($z, $n) = @_;
                    918: 	$z = cplx($z, 0) unless ref $z;
                    919: 	my $logn = $LOGN{$n};
                    920: 	$logn = $LOGN{$n} = CORE::log($n) unless defined $logn;	# Cache log(n)
                    921: 	return &log($z) / $logn;
                    922: }
                    923: 
                    924: #
                    925: # (cos)
                    926: #
                    927: # Compute cos(z) = (exp(iz) + exp(-iz))/2.
                    928: #
                    929: sub cos {
1.2     ! raeburn   930: 	my ($z) = @_ ? @_ : $_;
1.1       raeburn   931: 	return CORE::cos($z) unless ref $z;
                    932: 	my ($x, $y) = @{$z->_cartesian};
                    933: 	my $ey = CORE::exp($y);
                    934: 	my $sx = CORE::sin($x);
                    935: 	my $cx = CORE::cos($x);
                    936: 	my $ey_1 = $ey ? 1 / $ey : Inf();
                    937: 	return (ref $z)->make($cx * ($ey + $ey_1)/2,
                    938: 			      $sx * ($ey_1 - $ey)/2);
                    939: }
                    940: 
                    941: #
                    942: # (sin)
                    943: #
                    944: # Compute sin(z) = (exp(iz) - exp(-iz))/2.
                    945: #
                    946: sub sin {
1.2     ! raeburn   947: 	my ($z) = @_ ? @_ : $_;
1.1       raeburn   948: 	return CORE::sin($z) unless ref $z;
                    949: 	my ($x, $y) = @{$z->_cartesian};
                    950: 	my $ey = CORE::exp($y);
                    951: 	my $sx = CORE::sin($x);
                    952: 	my $cx = CORE::cos($x);
                    953: 	my $ey_1 = $ey ? 1 / $ey : Inf();
                    954: 	return (ref $z)->make($sx * ($ey + $ey_1)/2,
                    955: 			      $cx * ($ey - $ey_1)/2);
                    956: }
                    957: 
                    958: #
                    959: # tan
                    960: #
                    961: # Compute tan(z) = sin(z) / cos(z).
                    962: #
                    963: sub tan {
                    964: 	my ($z) = @_;
                    965: 	my $cz = &cos($z);
                    966: 	_divbyzero "tan($z)", "cos($z)" if $cz == 0;
                    967: 	return &sin($z) / $cz;
                    968: }
                    969: 
                    970: #
                    971: # sec
                    972: #
                    973: # Computes the secant sec(z) = 1 / cos(z).
                    974: #
                    975: sub sec {
                    976: 	my ($z) = @_;
                    977: 	my $cz = &cos($z);
                    978: 	_divbyzero "sec($z)", "cos($z)" if ($cz == 0);
                    979: 	return 1 / $cz;
                    980: }
                    981: 
                    982: #
                    983: # csc
                    984: #
                    985: # Computes the cosecant csc(z) = 1 / sin(z).
                    986: #
                    987: sub csc {
                    988: 	my ($z) = @_;
                    989: 	my $sz = &sin($z);
                    990: 	_divbyzero "csc($z)", "sin($z)" if ($sz == 0);
                    991: 	return 1 / $sz;
                    992: }
                    993: 
                    994: #
                    995: # cosec
                    996: #
                    997: # Alias for csc().
                    998: #
                    999: sub cosec { LONCAPA::LCMathComplex::csc(@_) }
                   1000: 
                   1001: #
                   1002: # cot
                   1003: #
                   1004: # Computes cot(z) = cos(z) / sin(z).
                   1005: #
                   1006: sub cot {
                   1007: 	my ($z) = @_;
                   1008: 	my $sz = &sin($z);
                   1009: 	_divbyzero "cot($z)", "sin($z)" if ($sz == 0);
                   1010: 	return &cos($z) / $sz;
                   1011: }
                   1012: 
                   1013: #
                   1014: # cotan
                   1015: #
                   1016: # Alias for cot().
                   1017: #
                   1018: sub cotan { LONCAPA::LCMathComplex::cot(@_) }
                   1019: 
                   1020: #
                   1021: # acos
                   1022: #
                   1023: # Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)).
                   1024: #
                   1025: sub acos {
                   1026: 	my $z = $_[0];
                   1027: 	return CORE::atan2(CORE::sqrt(1-$z*$z), $z)
                   1028: 	    if (! ref $z) && CORE::abs($z) <= 1;
                   1029: 	$z = cplx($z, 0) unless ref $z;
                   1030: 	my ($x, $y) = @{$z->_cartesian};
                   1031: 	return 0 if $x == 1 && $y == 0;
                   1032: 	my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
                   1033: 	my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
                   1034: 	my $alpha = ($t1 + $t2)/2;
                   1035: 	my $beta  = ($t1 - $t2)/2;
                   1036: 	$alpha = 1 if $alpha < 1;
                   1037: 	if    ($beta >  1) { $beta =  1 }
                   1038: 	elsif ($beta < -1) { $beta = -1 }
                   1039: 	my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta);
                   1040: 	my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));
                   1041: 	$v = -$v if $y > 0 || ($y == 0 && $x < -1);
                   1042: 	return (ref $z)->make($u, $v);
                   1043: }
                   1044: 
                   1045: #
                   1046: # asin
                   1047: #
                   1048: # Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)).
                   1049: #
                   1050: sub asin {
                   1051: 	my $z = $_[0];
                   1052: 	return CORE::atan2($z, CORE::sqrt(1-$z*$z))
                   1053: 	    if (! ref $z) && CORE::abs($z) <= 1;
                   1054: 	$z = cplx($z, 0) unless ref $z;
                   1055: 	my ($x, $y) = @{$z->_cartesian};
                   1056: 	return 0 if $x == 0 && $y == 0;
                   1057: 	my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
                   1058: 	my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
                   1059: 	my $alpha = ($t1 + $t2)/2;
                   1060: 	my $beta  = ($t1 - $t2)/2;
                   1061: 	$alpha = 1 if $alpha < 1;
                   1062: 	if    ($beta >  1) { $beta =  1 }
                   1063: 	elsif ($beta < -1) { $beta = -1 }
                   1064: 	my $u =  CORE::atan2($beta, CORE::sqrt(1-$beta*$beta));
                   1065: 	my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));
                   1066: 	$v = -$v if $y > 0 || ($y == 0 && $x < -1);
                   1067: 	return (ref $z)->make($u, $v);
                   1068: }
                   1069: 
                   1070: #
                   1071: # atan
                   1072: #
                   1073: # Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)).
                   1074: #
                   1075: sub atan {
                   1076: 	my ($z) = @_;
                   1077: 	return CORE::atan2($z, 1) unless ref $z;
                   1078: 	my ($x, $y) = ref $z ? @{$z->_cartesian} : ($z, 0);
                   1079: 	return 0 if $x == 0 && $y == 0;
                   1080: 	_divbyzero "atan(i)"  if ( $z == i);
                   1081: 	_logofzero "atan(-i)" if (-$z == i); # -i is a bad file test...
                   1082: 	my $log = &log((i + $z) / (i - $z));
                   1083: 	return _ip2 * $log;
                   1084: }
                   1085: 
                   1086: #
                   1087: # asec
                   1088: #
                   1089: # Computes the arc secant asec(z) = acos(1 / z).
                   1090: #
                   1091: sub asec {
                   1092: 	my ($z) = @_;
                   1093: 	_divbyzero "asec($z)", $z if ($z == 0);
                   1094: 	return acos(1 / $z);
                   1095: }
                   1096: 
                   1097: #
                   1098: # acsc
                   1099: #
                   1100: # Computes the arc cosecant acsc(z) = asin(1 / z).
                   1101: #
                   1102: sub acsc {
                   1103: 	my ($z) = @_;
                   1104: 	_divbyzero "acsc($z)", $z if ($z == 0);
                   1105: 	return asin(1 / $z);
                   1106: }
                   1107: 
                   1108: #
                   1109: # acosec
                   1110: #
                   1111: # Alias for acsc().
                   1112: #
                   1113: sub acosec { LONCAPA::LCMathComplex::acsc(@_) }
                   1114: 
                   1115: #
                   1116: # acot
                   1117: #
                   1118: # Computes the arc cotangent acot(z) = atan(1 / z)
                   1119: #
                   1120: sub acot {
                   1121: 	my ($z) = @_;
                   1122: 	_divbyzero "acot(0)"  if $z == 0;
                   1123: 	return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z)
                   1124: 	    unless ref $z;
                   1125: 	_divbyzero "acot(i)"  if ($z - i == 0);
                   1126: 	_logofzero "acot(-i)" if ($z + i == 0);
                   1127: 	return atan(1 / $z);
                   1128: }
                   1129: 
                   1130: #
                   1131: # acotan
                   1132: #
                   1133: # Alias for acot().
                   1134: #
                   1135: sub acotan { LONCAPA::LCMathComplex::acot(@_) }
                   1136: 
                   1137: #
                   1138: # cosh
                   1139: #
                   1140: # Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2.
                   1141: #
                   1142: sub cosh {
                   1143: 	my ($z) = @_;
                   1144: 	my $ex;
                   1145: 	unless (ref $z) {
                   1146: 	    $ex = CORE::exp($z);
                   1147:             return $ex ? ($ex == $ExpInf ? Inf() : ($ex + 1/$ex)/2) : Inf();
                   1148: 	}
                   1149: 	my ($x, $y) = @{$z->_cartesian};
                   1150: 	$ex = CORE::exp($x);
                   1151: 	my $ex_1 = $ex ? 1 / $ex : Inf();
                   1152: 	return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2,
                   1153: 			      CORE::sin($y) * ($ex - $ex_1)/2);
                   1154: }
                   1155: 
                   1156: #
                   1157: # sinh
                   1158: #
                   1159: # Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2.
                   1160: #
                   1161: sub sinh {
                   1162: 	my ($z) = @_;
                   1163: 	my $ex;
                   1164: 	unless (ref $z) {
                   1165: 	    return 0 if $z == 0;
                   1166: 	    $ex = CORE::exp($z);
                   1167:             return $ex ? ($ex == $ExpInf ? Inf() : ($ex - 1/$ex)/2) : -Inf();
                   1168: 	}
                   1169: 	my ($x, $y) = @{$z->_cartesian};
                   1170: 	my $cy = CORE::cos($y);
                   1171: 	my $sy = CORE::sin($y);
                   1172: 	$ex = CORE::exp($x);
                   1173: 	my $ex_1 = $ex ? 1 / $ex : Inf();
                   1174: 	return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2,
                   1175: 			      CORE::sin($y) * ($ex + $ex_1)/2);
                   1176: }
                   1177: 
                   1178: #
                   1179: # tanh
                   1180: #
                   1181: # Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z).
                   1182: #
                   1183: sub tanh {
                   1184: 	my ($z) = @_;
                   1185: 	my $cz = cosh($z);
                   1186: 	_divbyzero "tanh($z)", "cosh($z)" if ($cz == 0);
                   1187: 	my $sz = sinh($z);
                   1188: 	return  1 if $cz ==  $sz;
                   1189: 	return -1 if $cz == -$sz;
                   1190: 	return $sz / $cz;
                   1191: }
                   1192: 
                   1193: #
                   1194: # sech
                   1195: #
                   1196: # Computes the hyperbolic secant sech(z) = 1 / cosh(z).
                   1197: #
                   1198: sub sech {
                   1199: 	my ($z) = @_;
                   1200: 	my $cz = cosh($z);
                   1201: 	_divbyzero "sech($z)", "cosh($z)" if ($cz == 0);
                   1202: 	return 1 / $cz;
                   1203: }
                   1204: 
                   1205: #
                   1206: # csch
                   1207: #
                   1208: # Computes the hyperbolic cosecant csch(z) = 1 / sinh(z).
                   1209: #
                   1210: sub csch {
                   1211: 	my ($z) = @_;
                   1212: 	my $sz = sinh($z);
                   1213: 	_divbyzero "csch($z)", "sinh($z)" if ($sz == 0);
                   1214: 	return 1 / $sz;
                   1215: }
                   1216: 
                   1217: #
                   1218: # cosech
                   1219: #
                   1220: # Alias for csch().
                   1221: #
                   1222: sub cosech { LONCAPA::LCMathComplex::csch(@_) }
                   1223: 
                   1224: #
                   1225: # coth
                   1226: #
                   1227: # Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z).
                   1228: #
                   1229: sub coth {
                   1230: 	my ($z) = @_;
                   1231: 	my $sz = sinh($z);
                   1232: 	_divbyzero "coth($z)", "sinh($z)" if $sz == 0;
                   1233: 	my $cz = cosh($z);
                   1234: 	return  1 if $cz ==  $sz;
                   1235: 	return -1 if $cz == -$sz;
                   1236: 	return $cz / $sz;
                   1237: }
                   1238: 
                   1239: #
                   1240: # cotanh
                   1241: #
                   1242: # Alias for coth().
                   1243: #
                   1244: sub cotanh { LONCAPA::LCMathComplex::coth(@_) }
                   1245: 
                   1246: #
                   1247: # acosh
                   1248: #
                   1249: # Computes the area/inverse hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)).
                   1250: #
                   1251: sub acosh {
                   1252: 	my ($z) = @_;
                   1253: 	unless (ref $z) {
                   1254: 	    $z = cplx($z, 0);
                   1255: 	}
                   1256: 	my ($re, $im) = @{$z->_cartesian};
                   1257: 	if ($im == 0) {
                   1258: 	    return CORE::log($re + CORE::sqrt($re*$re - 1))
                   1259: 		if $re >= 1;
                   1260: 	    return cplx(0, CORE::atan2(CORE::sqrt(1 - $re*$re), $re))
                   1261: 		if CORE::abs($re) < 1;
                   1262: 	}
                   1263: 	my $t = &sqrt($z * $z - 1) + $z;
                   1264: 	# Try Taylor if looking bad (this usually means that
                   1265: 	# $z was large negative, therefore the sqrt is really
                   1266: 	# close to abs(z), summing that with z...)
                   1267: 	$t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7)
                   1268: 	    if $t == 0;
                   1269: 	my $u = &log($t);
                   1270: 	$u->Im(-$u->Im) if $re < 0 && $im == 0;
                   1271: 	return $re < 0 ? -$u : $u;
                   1272: }
                   1273: 
                   1274: #
                   1275: # asinh
                   1276: #
                   1277: # Computes the area/inverse hyperbolic sine asinh(z) = log(z + sqrt(z*z+1))
                   1278: #
                   1279: sub asinh {
                   1280: 	my ($z) = @_;
                   1281: 	unless (ref $z) {
                   1282: 	    my $t = $z + CORE::sqrt($z*$z + 1);
                   1283: 	    return CORE::log($t) if $t;
                   1284: 	}
                   1285: 	my $t = &sqrt($z * $z + 1) + $z;
                   1286: 	# Try Taylor if looking bad (this usually means that
                   1287: 	# $z was large negative, therefore the sqrt is really
                   1288: 	# close to abs(z), summing that with z...)
                   1289: 	$t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7)
                   1290: 	    if $t == 0;
                   1291: 	return &log($t);
                   1292: }
                   1293: 
                   1294: #
                   1295: # atanh
                   1296: #
                   1297: # Computes the area/inverse hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)).
                   1298: #
                   1299: sub atanh {
                   1300: 	my ($z) = @_;
                   1301: 	unless (ref $z) {
                   1302: 	    return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1;
                   1303: 	    $z = cplx($z, 0);
                   1304: 	}
                   1305: 	_divbyzero 'atanh(1)',  "1 - $z" if (1 - $z == 0);
                   1306: 	_logofzero 'atanh(-1)'           if (1 + $z == 0);
                   1307: 	return 0.5 * &log((1 + $z) / (1 - $z));
                   1308: }
                   1309: 
                   1310: #
                   1311: # asech
                   1312: #
                   1313: # Computes the area/inverse hyperbolic secant asech(z) = acosh(1 / z).
                   1314: #
                   1315: sub asech {
                   1316: 	my ($z) = @_;
                   1317: 	_divbyzero 'asech(0)', "$z" if ($z == 0);
                   1318: 	return acosh(1 / $z);
                   1319: }
                   1320: 
                   1321: #
                   1322: # acsch
                   1323: #
                   1324: # Computes the area/inverse hyperbolic cosecant acsch(z) = asinh(1 / z).
                   1325: #
                   1326: sub acsch {
                   1327: 	my ($z) = @_;
                   1328: 	_divbyzero 'acsch(0)', $z if ($z == 0);
                   1329: 	return asinh(1 / $z);
                   1330: }
                   1331: 
                   1332: #
                   1333: # acosech
                   1334: #
                   1335: # Alias for acosh().
                   1336: #
                   1337: sub acosech { LONCAPA::LCMathComplex::acsch(@_) }
                   1338: 
                   1339: #
                   1340: # acoth
                   1341: #
                   1342: # Computes the area/inverse hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)).
                   1343: #
                   1344: sub acoth {
                   1345: 	my ($z) = @_;
                   1346: 	_divbyzero 'acoth(0)'            if ($z == 0);
                   1347: 	unless (ref $z) {
                   1348: 	    return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1;
                   1349: 	    $z = cplx($z, 0);
                   1350: 	}
                   1351: 	_divbyzero 'acoth(1)',  "$z - 1" if ($z - 1 == 0);
                   1352: 	_logofzero 'acoth(-1)', "1 + $z" if (1 + $z == 0);
                   1353: 	return &log((1 + $z) / ($z - 1)) / 2;
                   1354: }
                   1355: 
                   1356: #
                   1357: # acotanh
                   1358: #
                   1359: # Alias for acot().
                   1360: #
                   1361: sub acotanh { LONCAPA::LCMathComplex::acoth(@_) }
                   1362: 
                   1363: #
                   1364: # (atan2)
                   1365: #
                   1366: # Compute atan(z1/z2), minding the right quadrant.
                   1367: #
                   1368: sub atan2 {
                   1369: 	my ($z1, $z2, $inverted) = @_;
                   1370: 	my ($re1, $im1, $re2, $im2);
                   1371: 	if ($inverted) {
                   1372: 	    ($re1, $im1) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
                   1373: 	    ($re2, $im2) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
                   1374: 	} else {
                   1375: 	    ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
                   1376: 	    ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
                   1377: 	}
                   1378: 	if ($im1 || $im2) {
                   1379: 	    # In MATLAB the imaginary parts are ignored.
                   1380: 	    # warn "atan2: Imaginary parts ignored";
                   1381: 	    # http://documents.wolfram.com/mathematica/functions/ArcTan
                   1382: 	    # NOTE: Mathematica ArcTan[x,y] while atan2(y,x)
                   1383: 	    my $s = $z1 * $z1 + $z2 * $z2;
                   1384: 	    _divbyzero("atan2") if $s == 0;
                   1385: 	    my $i = &i;
                   1386: 	    my $r = $z2 + $z1 * $i;
                   1387: 	    return -$i * &log($r / &sqrt( $s ));
                   1388: 	}
                   1389: 	return CORE::atan2($re1, $re2);
                   1390: }
                   1391: 
                   1392: #
                   1393: # display_format
                   1394: # ->display_format
                   1395: #
                   1396: # Set (get if no argument) the display format for all complex numbers that
                   1397: # don't happen to have overridden it via ->display_format
                   1398: #
                   1399: # When called as an object method, this actually sets the display format for
                   1400: # the current object.
                   1401: #
                   1402: # Valid object formats are 'c' and 'p' for cartesian and polar. The first
                   1403: # letter is used actually, so the type can be fully spelled out for clarity.
                   1404: #
                   1405: sub display_format {
                   1406: 	my $self  = shift;
                   1407: 	my %display_format = %DISPLAY_FORMAT;
                   1408: 
                   1409: 	if (ref $self) {			# Called as an object method
                   1410: 	    if (exists $self->{display_format}) {
                   1411: 		my %obj = %{$self->{display_format}};
                   1412: 		@display_format{keys %obj} = values %obj;
                   1413: 	    }
                   1414: 	}
                   1415: 	if (@_ == 1) {
                   1416: 	    $display_format{style} = shift;
                   1417: 	} else {
                   1418: 	    my %new = @_;
                   1419: 	    @display_format{keys %new} = values %new;
                   1420: 	}
                   1421: 
                   1422: 	if (ref $self) { # Called as an object method
                   1423: 	    $self->{display_format} = { %display_format };
                   1424: 	    return
                   1425: 		wantarray ?
                   1426: 		    %{$self->{display_format}} :
                   1427: 		    $self->{display_format}->{style};
                   1428: 	}
                   1429: 
                   1430:         # Called as a class method
                   1431: 	%DISPLAY_FORMAT = %display_format;
                   1432: 	return
                   1433: 	    wantarray ?
                   1434: 		%DISPLAY_FORMAT :
                   1435: 		    $DISPLAY_FORMAT{style};
                   1436: }
                   1437: 
                   1438: #
                   1439: # (_stringify)
                   1440: #
                   1441: # Show nicely formatted complex number under its cartesian or polar form,
                   1442: # depending on the current display format:
                   1443: #
                   1444: # . If a specific display format has been recorded for this object, use it.
                   1445: # . Otherwise, use the generic current default for all complex numbers,
                   1446: #   which is a package global variable.
                   1447: #
                   1448: sub _stringify {
                   1449: 	my ($z) = shift;
                   1450: 
                   1451: 	my $style = $z->display_format;
                   1452: 
                   1453: 	$style = $DISPLAY_FORMAT{style} unless defined $style;
                   1454: 
                   1455: 	return $z->_stringify_polar if $style =~ /^p/i;
                   1456: 	return $z->_stringify_cartesian;
                   1457: }
                   1458: 
                   1459: #
                   1460: # ->_stringify_cartesian
                   1461: #
                   1462: # Stringify as a cartesian representation 'a+bi'.
                   1463: #
                   1464: sub _stringify_cartesian {
                   1465: 	my $z  = shift;
                   1466: 	my ($x, $y) = @{$z->_cartesian};
                   1467: 	my ($re, $im);
                   1468: 
                   1469: 	my %format = $z->display_format;
                   1470: 	my $format = $format{format};
                   1471: 
                   1472: 	if ($x) {
                   1473: 	    if ($x =~ /^NaN[QS]?$/i) {
                   1474: 		$re = $x;
                   1475: 	    } else {
                   1476: 		if ($x =~ /^-?\Q$Inf\E$/oi) {
                   1477: 		    $re = $x;
                   1478: 		} else {
                   1479: 		    $re = defined $format ? sprintf($format, $x) : $x;
                   1480: 		}
                   1481: 	    }
                   1482: 	} else {
                   1483: 	    undef $re;
                   1484: 	}
                   1485: 
                   1486: 	if ($y) {
                   1487: 	    if ($y =~ /^(NaN[QS]?)$/i) {
                   1488: 		$im = $y;
                   1489: 	    } else {
                   1490: 		if ($y =~ /^-?\Q$Inf\E$/oi) {
                   1491: 		    $im = $y;
                   1492: 		} else {
                   1493: 		    $im =
                   1494: 			defined $format ?
                   1495: 			    sprintf($format, $y) :
                   1496: 			    ($y == 1 ? "" : ($y == -1 ? "-" : $y));
                   1497: 		}
                   1498: 	    }
                   1499: 	    $im .= "i";
                   1500: 	} else {
                   1501: 	    undef $im;
                   1502: 	}
                   1503: 
                   1504: 	my $str = $re;
                   1505: 
                   1506: 	if (defined $im) {
                   1507: 	    if ($y < 0) {
                   1508: 		$str .= $im;
                   1509: 	    } elsif ($y > 0 || $im =~ /^NaN[QS]?i$/i)  {
                   1510: 		$str .= "+" if defined $re;
                   1511: 		$str .= $im;
                   1512: 	    }
                   1513: 	} elsif (!defined $re) {
                   1514: 	    $str = "0";
                   1515: 	}
                   1516: 
                   1517: 	return $str;
                   1518: }
                   1519: 
                   1520: 
                   1521: #
                   1522: # ->_stringify_polar
                   1523: #
                   1524: # Stringify as a polar representation '[r,t]'.
                   1525: #
                   1526: sub _stringify_polar {
                   1527: 	my $z  = shift;
                   1528: 	my ($r, $t) = @{$z->_polar};
                   1529: 	my $theta;
                   1530: 
                   1531: 	my %format = $z->display_format;
                   1532: 	my $format = $format{format};
                   1533: 
                   1534: 	if ($t =~ /^NaN[QS]?$/i || $t =~ /^-?\Q$Inf\E$/oi) {
                   1535: 	    $theta = $t; 
                   1536: 	} elsif ($t == pi) {
                   1537: 	    $theta = "pi";
                   1538: 	} elsif ($r == 0 || $t == 0) {
                   1539: 	    $theta = defined $format ? sprintf($format, $t) : $t;
                   1540: 	}
                   1541: 
                   1542: 	return "[$r,$theta]" if defined $theta;
                   1543: 
                   1544: 	#
                   1545: 	# Try to identify pi/n and friends.
                   1546: 	#
                   1547: 
                   1548: 	$t -= int(CORE::abs($t) / pi2) * pi2;
                   1549: 
                   1550: 	if ($format{polar_pretty_print} && $t) {
                   1551: 	    my ($a, $b);
                   1552: 	    for $a (2..9) {
                   1553: 		$b = $t * $a / pi;
                   1554: 		if ($b =~ /^-?\d+$/) {
                   1555: 		    $b = $b < 0 ? "-" : "" if CORE::abs($b) == 1;
                   1556: 		    $theta = "${b}pi/$a";
                   1557: 		    last;
                   1558: 		}
                   1559: 	    }
                   1560: 	}
                   1561: 
                   1562:         if (defined $format) {
                   1563: 	    $r     = sprintf($format, $r);
1.2     ! raeburn  1564: 	    $theta = sprintf($format, $t) unless defined $theta;
1.1       raeburn  1565: 	} else {
                   1566: 	    $theta = $t unless defined $theta;
                   1567: 	}
                   1568: 
                   1569: 	return "[$r,$theta]";
                   1570: }
                   1571: 
                   1572: sub Inf {
                   1573:     return $Inf;
                   1574: }
                   1575: 
                   1576: 1;
                   1577: __END__
                   1578: 
                   1579: =pod
                   1580: 
                   1581: =head1 NAME
                   1582: 
                   1583: LONCAPA::LCMathComplex - complex numbers and associated mathematical functions
                   1584: 
                   1585: =head1 SYNOPSIS
                   1586: 
                   1587: 	use LONCAPA::LCMathComplex;
                   1588: 
                   1589: 	$z = LONCAPA::LCMathComplex->make(5, 6);
                   1590: 	$t = 4 - 3*i + $z;
                   1591: 	$j = cplxe(1, 2*pi/3);
                   1592: 
                   1593: =head1 DESCRIPTION
                   1594: 
                   1595: Derived from Math::Complex.
                   1596: 
                   1597: Modified for use in Safe Space in LON-CAPA by removing the dependency on
                   1598: Config.pm introduced in rev. 1.51 (which contains calls that are disallowed
1.2     ! raeburn  1599: in Safe Space).  In addition, Scalar::Util::set_prototype() is not used for
        !          1600: abs(), cos(), exp(), log(), sin(), and sqrt(), to avoid warnings in logs:
        !          1601: of type: "Use of uninitialized value" (Config.pm line 62).
1.1       raeburn  1602: 
                   1603: In this LON-CAPA-specific version, the following code changes were made.
                   1604: 
                   1605: 15,16d17
                   1606: < use Config;
1.2     ! raeburn  1607: < 
        !          1608: 49,51c50
1.1       raeburn  1609: <     my $nvsize = $Config{nvsize} ||
                   1610: <               ($Config{uselongdouble} && $Config{longdblsize}) ||
                   1611: <                  $Config{doublesize};
                   1612: ---
                   1613: >     my $nvsize = 8;
                   1614: 
1.2     ! raeburn  1615: 91,92d89
        !          1616: < use Scalar::Util qw(set_prototype);
        !          1617: < 
        !          1618: 96,109d92
        !          1619: < BEGIN {
        !          1620: <     # For certain functions that we override, in 5.10 or better
        !          1621: <     # we can set a smarter prototype that will handle the lexical $_
        !          1622: <     # (also a 5.10+ feature).
        !          1623: <     if ($] >= 5.010000) {
        !          1624: <         set_prototype \&abs, '_';
        !          1625: <         set_prototype \&cos, '_';
        !          1626: <         set_prototype \&exp, '_';
        !          1627: <         set_prototype \&log, '_';
        !          1628: <         set_prototype \&sin, '_';
        !          1629: <         set_prototype \&sqrt, '_';
        !          1630: <     }
        !          1631: < }
        !          1632: 
1.1       raeburn  1633: Note: the value assigned to $nvsize is 8 by default.
                   1634: 
                   1635: Whenever ./UPDATE is run to install or update LON-CAPA, the code which
                   1636: sets $nvsize in the standard Math::Complex script will be run in
                   1637: LCMathComplex_check.piml and the value of $nvsize will be set to the
                   1638: appropriate value: 4, 8, 10, 12 or 16.
                   1639: 
                   1640: In addition all instances referring to Math::Complex were changed to
                   1641: refer to LONCAPA::LCMathComplex instead.
                   1642: 
                   1643: This package lets you create and manipulate complex numbers. By default,
                   1644: I<Perl> limits itself to real numbers, but an extra C<use> statement brings
                   1645: full complex support, along with a full set of mathematical functions
                   1646: typically associated with and/or extended to complex numbers.
                   1647: 
                   1648: If you wonder what complex numbers are, they were invented to be able to solve
                   1649: the following equation:
                   1650: 
                   1651: 	x*x = -1
                   1652: 
                   1653: and by definition, the solution is noted I<i> (engineers use I<j> instead since
                   1654: I<i> usually denotes an intensity, but the name does not matter). The number
                   1655: I<i> is a pure I<imaginary> number.
                   1656: 
                   1657: The arithmetics with pure imaginary numbers works just like you would expect
                   1658: it with real numbers... you just have to remember that
                   1659: 
                   1660: 	i*i = -1
                   1661: 
                   1662: so you have:
                   1663: 
                   1664: 	5i + 7i = i * (5 + 7) = 12i
                   1665: 	4i - 3i = i * (4 - 3) = i
                   1666: 	4i * 2i = -8
                   1667: 	6i / 2i = 3
                   1668: 	1 / i = -i
                   1669: 
                   1670: Complex numbers are numbers that have both a real part and an imaginary
                   1671: part, and are usually noted:
                   1672: 
                   1673: 	a + bi
                   1674: 
                   1675: where C<a> is the I<real> part and C<b> is the I<imaginary> part. The
                   1676: arithmetic with complex numbers is straightforward. You have to
                   1677: keep track of the real and the imaginary parts, but otherwise the
                   1678: rules used for real numbers just apply:
                   1679: 
                   1680: 	(4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i
                   1681: 	(2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i
                   1682: 
                   1683: A graphical representation of complex numbers is possible in a plane
                   1684: (also called the I<complex plane>, but it's really a 2D plane).
                   1685: The number
                   1686: 
                   1687: 	z = a + bi
                   1688: 
                   1689: is the point whose coordinates are (a, b). Actually, it would
                   1690: be the vector originating from (0, 0) to (a, b). It follows that the addition
                   1691: of two complex numbers is a vectorial addition.
                   1692: 
                   1693: Since there is a bijection between a point in the 2D plane and a complex
                   1694: number (i.e. the mapping is unique and reciprocal), a complex number
                   1695: can also be uniquely identified with polar coordinates:
                   1696: 
                   1697: 	[rho, theta]
                   1698: 
                   1699: where C<rho> is the distance to the origin, and C<theta> the angle between
                   1700: the vector and the I<x> axis. There is a notation for this using the
                   1701: exponential form, which is:
                   1702: 
                   1703: 	rho * exp(i * theta)
                   1704: 
                   1705: where I<i> is the famous imaginary number introduced above. Conversion
                   1706: between this form and the cartesian form C<a + bi> is immediate:
                   1707: 
                   1708: 	a = rho * cos(theta)
                   1709: 	b = rho * sin(theta)
                   1710: 
                   1711: which is also expressed by this formula:
                   1712: 
                   1713: 	z = rho * exp(i * theta) = rho * (cos theta + i * sin theta)
                   1714: 
                   1715: In other words, it's the projection of the vector onto the I<x> and I<y>
                   1716: axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta>
                   1717: the I<argument> of the complex number. The I<norm> of C<z> is
                   1718: marked here as C<abs(z)>.
                   1719: 
                   1720: The polar notation (also known as the trigonometric representation) is
                   1721: much more handy for performing multiplications and divisions of
                   1722: complex numbers, whilst the cartesian notation is better suited for
                   1723: additions and subtractions. Real numbers are on the I<x> axis, and
                   1724: therefore I<y> or I<theta> is zero or I<pi>.
                   1725: 
                   1726: All the common operations that can be performed on a real number have
                   1727: been defined to work on complex numbers as well, and are merely
                   1728: I<extensions> of the operations defined on real numbers. This means
                   1729: they keep their natural meaning when there is no imaginary part, provided
                   1730: the number is within their definition set.
                   1731: 
                   1732: For instance, the C<sqrt> routine which computes the square root of
                   1733: its argument is only defined for non-negative real numbers and yields a
                   1734: non-negative real number (it is an application from B<R+> to B<R+>).
                   1735: If we allow it to return a complex number, then it can be extended to
                   1736: negative real numbers to become an application from B<R> to B<C> (the
                   1737: set of complex numbers):
                   1738: 
                   1739: 	sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i
                   1740: 
                   1741: It can also be extended to be an application from B<C> to B<C>,
                   1742: whilst its restriction to B<R> behaves as defined above by using
                   1743: the following definition:
                   1744: 
                   1745: 	sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2)
                   1746: 
                   1747: Indeed, a negative real number can be noted C<[x,pi]> (the modulus
                   1748: I<x> is always non-negative, so C<[x,pi]> is really C<-x>, a negative
                   1749: number) and the above definition states that
                   1750: 
                   1751: 	sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i
                   1752: 
                   1753: which is exactly what we had defined for negative real numbers above.
                   1754: The C<sqrt> returns only one of the solutions: if you want the both,
                   1755: use the C<root> function.
                   1756: 
                   1757: All the common mathematical functions defined on real numbers that
                   1758: are extended to complex numbers share that same property of working
                   1759: I<as usual> when the imaginary part is zero (otherwise, it would not
                   1760: be called an extension, would it?).
                   1761: 
                   1762: A I<new> operation possible on a complex number that is
                   1763: the identity for real numbers is called the I<conjugate>, and is noted
                   1764: with a horizontal bar above the number, or C<~z> here.
                   1765: 
                   1766: 	 z = a + bi
                   1767: 	~z = a - bi
                   1768: 
                   1769: Simple... Now look:
                   1770: 
                   1771: 	z * ~z = (a + bi) * (a - bi) = a*a + b*b
                   1772: 
                   1773: We saw that the norm of C<z> was noted C<abs(z)> and was defined as the
                   1774: distance to the origin, also known as:
                   1775: 
                   1776: 	rho = abs(z) = sqrt(a*a + b*b)
                   1777: 
                   1778: so
                   1779: 
                   1780: 	z * ~z = abs(z) ** 2
                   1781: 
                   1782: If z is a pure real number (i.e. C<b == 0>), then the above yields:
                   1783: 
                   1784: 	a * a = abs(a) ** 2
                   1785: 
                   1786: which is true (C<abs> has the regular meaning for real number, i.e. stands
                   1787: for the absolute value). This example explains why the norm of C<z> is
                   1788: noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet
                   1789: is the regular C<abs> we know when the complex number actually has no
                   1790: imaginary part... This justifies I<a posteriori> our use of the C<abs>
                   1791: notation for the norm.
                   1792: 
                   1793: =head1 OPERATIONS
                   1794: 
                   1795: Given the following notations:
                   1796: 
                   1797: 	z1 = a + bi = r1 * exp(i * t1)
                   1798: 	z2 = c + di = r2 * exp(i * t2)
                   1799: 	z = <any complex or real number>
                   1800: 
                   1801: the following (overloaded) operations are supported on complex numbers:
                   1802: 
                   1803: 	z1 + z2 = (a + c) + i(b + d)
                   1804: 	z1 - z2 = (a - c) + i(b - d)
                   1805: 	z1 * z2 = (r1 * r2) * exp(i * (t1 + t2))
                   1806: 	z1 / z2 = (r1 / r2) * exp(i * (t1 - t2))
                   1807: 	z1 ** z2 = exp(z2 * log z1)
                   1808: 	~z = a - bi
                   1809: 	abs(z) = r1 = sqrt(a*a + b*b)
                   1810: 	sqrt(z) = sqrt(r1) * exp(i * t/2)
                   1811: 	exp(z) = exp(a) * exp(i * b)
                   1812: 	log(z) = log(r1) + i*t
                   1813: 	sin(z) = 1/2i (exp(i * z1) - exp(-i * z))
                   1814: 	cos(z) = 1/2 (exp(i * z1) + exp(-i * z))
                   1815: 	atan2(y, x) = atan(y / x) # Minding the right quadrant, note the order.
                   1816: 
                   1817: The definition used for complex arguments of atan2() is
                   1818: 
                   1819:        -i log((x + iy)/sqrt(x*x+y*y))
                   1820: 
                   1821: Note that atan2(0, 0) is not well-defined.
                   1822: 
                   1823: The following extra operations are supported on both real and complex
                   1824: numbers:
                   1825: 
                   1826: 	Re(z) = a
                   1827: 	Im(z) = b
                   1828: 	arg(z) = t
                   1829: 	abs(z) = r
                   1830: 
                   1831: 	cbrt(z) = z ** (1/3)
                   1832: 	log10(z) = log(z) / log(10)
                   1833: 	logn(z, n) = log(z) / log(n)
                   1834: 
                   1835: 	tan(z) = sin(z) / cos(z)
                   1836: 
                   1837: 	csc(z) = 1 / sin(z)
                   1838: 	sec(z) = 1 / cos(z)
                   1839: 	cot(z) = 1 / tan(z)
                   1840: 
                   1841: 	asin(z) = -i * log(i*z + sqrt(1-z*z))
                   1842: 	acos(z) = -i * log(z + i*sqrt(1-z*z))
                   1843: 	atan(z) = i/2 * log((i+z) / (i-z))
                   1844: 
                   1845: 	acsc(z) = asin(1 / z)
                   1846: 	asec(z) = acos(1 / z)
                   1847: 	acot(z) = atan(1 / z) = -i/2 * log((i+z) / (z-i))
                   1848: 
                   1849: 	sinh(z) = 1/2 (exp(z) - exp(-z))
                   1850: 	cosh(z) = 1/2 (exp(z) + exp(-z))
                   1851: 	tanh(z) = sinh(z) / cosh(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z))
                   1852: 
                   1853: 	csch(z) = 1 / sinh(z)
                   1854: 	sech(z) = 1 / cosh(z)
                   1855: 	coth(z) = 1 / tanh(z)
                   1856: 
                   1857: 	asinh(z) = log(z + sqrt(z*z+1))
                   1858: 	acosh(z) = log(z + sqrt(z*z-1))
                   1859: 	atanh(z) = 1/2 * log((1+z) / (1-z))
                   1860: 
                   1861: 	acsch(z) = asinh(1 / z)
                   1862: 	asech(z) = acosh(1 / z)
                   1863: 	acoth(z) = atanh(1 / z) = 1/2 * log((1+z) / (z-1))
                   1864: 
                   1865: I<arg>, I<abs>, I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>,
                   1866: I<coth>, I<acosech>, I<acotanh>, have aliases I<rho>, I<theta>, I<ln>,
                   1867: I<cosec>, I<cotan>, I<acosec>, I<acotan>, I<cosech>, I<cotanh>,
                   1868: I<acosech>, I<acotanh>, respectively.  C<Re>, C<Im>, C<arg>, C<abs>,
                   1869: C<rho>, and C<theta> can be used also as mutators.  The C<cbrt>
                   1870: returns only one of the solutions: if you want all three, use the
                   1871: C<root> function.
                   1872: 
                   1873: The I<root> function is available to compute all the I<n>
                   1874: roots of some complex, where I<n> is a strictly positive integer.
                   1875: There are exactly I<n> such roots, returned as a list. Getting the
                   1876: number mathematicians call C<j> such that:
                   1877: 
                   1878: 	1 + j + j*j = 0;
                   1879: 
                   1880: is a simple matter of writing:
                   1881: 
                   1882: 	$j = ((root(1, 3))[1];
                   1883: 
                   1884: The I<k>th root for C<z = [r,t]> is given by:
                   1885: 
                   1886: 	(root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n)
                   1887: 
                   1888: You can return the I<k>th root directly by C<root(z, n, k)>,
                   1889: indexing starting from I<zero> and ending at I<n - 1>.
                   1890: 
                   1891: The I<spaceship> numeric comparison operator, E<lt>=E<gt>, is also
                   1892: defined. In order to ensure its restriction to real numbers is conform
                   1893: to what you would expect, the comparison is run on the real part of
                   1894: the complex number first, and imaginary parts are compared only when
                   1895: the real parts match.
                   1896: 
                   1897: =head1 CREATION
                   1898: 
                   1899: To create a complex number, use either:
                   1900: 
                   1901: 	$z = LONCAPA::LCMathComplex->make(3, 4);
                   1902: 	$z = cplx(3, 4);
                   1903: 
                   1904: if you know the cartesian form of the number, or
                   1905: 
                   1906: 	$z = 3 + 4*i;
                   1907: 
                   1908: if you like. To create a number using the polar form, use either:
                   1909: 
                   1910: 	$z = LONCAPA::LCMathComplex->emake(5, pi/3);
                   1911: 	$x = cplxe(5, pi/3);
                   1912: 
                   1913: instead. The first argument is the modulus, the second is the angle
                   1914: (in radians, the full circle is 2*pi).  (Mnemonic: C<e> is used as a
                   1915: notation for complex numbers in the polar form).
                   1916: 
                   1917: It is possible to write:
                   1918: 
                   1919: 	$x = cplxe(-3, pi/4);
                   1920: 
                   1921: but that will be silently converted into C<[3,-3pi/4]>, since the
                   1922: modulus must be non-negative (it represents the distance to the origin
                   1923: in the complex plane).
                   1924: 
                   1925: It is also possible to have a complex number as either argument of the
                   1926: C<make>, C<emake>, C<cplx>, and C<cplxe>: the appropriate component of
                   1927: the argument will be used.
                   1928: 
                   1929: 	$z1 = cplx(-2,  1);
                   1930: 	$z2 = cplx($z1, 4);
                   1931: 
                   1932: The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also
                   1933: understand a single (string) argument of the forms
                   1934: 
                   1935:     	2-3i
                   1936:     	-3i
                   1937: 	[2,3]
                   1938: 	[2,-3pi/4]
                   1939: 	[2]
                   1940: 
                   1941: in which case the appropriate cartesian and exponential components
                   1942: will be parsed from the string and used to create new complex numbers.
                   1943: The imaginary component and the theta, respectively, will default to zero.
                   1944: 
                   1945: The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also
                   1946: understand the case of no arguments: this means plain zero or (0, 0).
                   1947: 
                   1948: =head1 DISPLAYING
                   1949: 
                   1950: When printed, a complex number is usually shown under its cartesian
                   1951: style I<a+bi>, but there are legitimate cases where the polar style
                   1952: I<[r,t]> is more appropriate.  The process of converting the complex
                   1953: number into a string that can be displayed is known as I<stringification>.
                   1954: 
                   1955: By calling the class method C<LONCAPA::LCMathComplex::display_format> and
                   1956: supplying either C<"polar"> or C<"cartesian"> as an argument, you
                   1957: override the default display style, which is C<"cartesian">. Not
                   1958: supplying any argument returns the current settings.
                   1959: 
                   1960: This default can be overridden on a per-number basis by calling the
                   1961: C<display_format> method instead. As before, not supplying any argument
                   1962: returns the current display style for this number. Otherwise whatever you
                   1963: specify will be the new display style for I<this> particular number.
                   1964: 
                   1965: For instance:
                   1966: 
                   1967: 	use LONCAPA::LCMathComplex;
                   1968: 
                   1969: 	LONCAPA::LCMathComplex::display_format('polar');
                   1970: 	$j = (root(1, 3))[1];
                   1971: 	print "j = $j\n";		# Prints "j = [1,2pi/3]"
                   1972: 	$j->display_format('cartesian');
                   1973: 	print "j = $j\n";		# Prints "j = -0.5+0.866025403784439i"
                   1974: 
                   1975: The polar style attempts to emphasize arguments like I<k*pi/n>
                   1976: (where I<n> is a positive integer and I<k> an integer within [-9, +9]),
                   1977: this is called I<polar pretty-printing>.
                   1978: 
                   1979: For the reverse of stringifying, see the C<make> and C<emake>.
                   1980: 
                   1981: =head2 CHANGED IN PERL 5.6
                   1982: 
                   1983: The C<display_format> class method and the corresponding
                   1984: C<display_format> object method can now be called using
                   1985: a parameter hash instead of just a one parameter.
                   1986: 
                   1987: The old display format style, which can have values C<"cartesian"> or
                   1988: C<"polar">, can be changed using the C<"style"> parameter.
                   1989: 
                   1990: 	$j->display_format(style => "polar");
                   1991: 
                   1992: The one parameter calling convention also still works.
                   1993: 
                   1994: 	$j->display_format("polar");
                   1995: 
                   1996: There are two new display parameters.
                   1997: 
                   1998: The first one is C<"format">, which is a sprintf()-style format string
                   1999: to be used for both numeric parts of the complex number(s).  The is
                   2000: somewhat system-dependent but most often it corresponds to C<"%.15g">.
                   2001: You can revert to the default by setting the C<format> to C<undef>.
                   2002: 
                   2003: 	# the $j from the above example
                   2004: 
                   2005: 	$j->display_format('format' => '%.5f');
                   2006: 	print "j = $j\n";		# Prints "j = -0.50000+0.86603i"
                   2007: 	$j->display_format('format' => undef);
                   2008: 	print "j = $j\n";		# Prints "j = -0.5+0.86603i"
                   2009: 
                   2010: Notice that this affects also the return values of the
                   2011: C<display_format> methods: in list context the whole parameter hash
                   2012: will be returned, as opposed to only the style parameter value.
                   2013: This is a potential incompatibility with earlier versions if you
                   2014: have been calling the C<display_format> method in list context.
                   2015: 
                   2016: The second new display parameter is C<"polar_pretty_print">, which can
                   2017: be set to true or false, the default being true.  See the previous
                   2018: section for what this means.
                   2019: 
                   2020: =head1 USAGE
                   2021: 
                   2022: Thanks to overloading, the handling of arithmetics with complex numbers
                   2023: is simple and almost transparent.
                   2024: 
                   2025: Here are some examples:
                   2026: 
                   2027: 	use LONCAPA::LCMathComplex;
                   2028: 
                   2029: 	$j = cplxe(1, 2*pi/3);	# $j ** 3 == 1
                   2030: 	print "j = $j, j**3 = ", $j ** 3, "\n";
                   2031: 	print "1 + j + j**2 = ", 1 + $j + $j**2, "\n";
                   2032: 
                   2033: 	$z = -16 + 0*i;			# Force it to be a complex
                   2034: 	print "sqrt($z) = ", sqrt($z), "\n";
                   2035: 
                   2036: 	$k = exp(i * 2*pi/3);
                   2037: 	print "$j - $k = ", $j - $k, "\n";
                   2038: 
                   2039: 	$z->Re(3);			# Re, Im, arg, abs,
                   2040: 	$j->arg(2);			# (the last two aka rho, theta)
                   2041: 					# can be used also as mutators.
                   2042: 
                   2043: =head1 CONSTANTS
                   2044: 
                   2045: =head2 PI
                   2046: 
                   2047: The constant C<pi> and some handy multiples of it (pi2, pi4,
                   2048: and pip2 (pi/2) and pip4 (pi/4)) are also available if separately
                   2049: exported:
                   2050: 
                   2051:     use LONCAPA::LCMathComplex ':pi'; 
                   2052:     $third_of_circle = pi2 / 3;
                   2053: 
                   2054: =head2 Inf
                   2055: 
                   2056: The floating point infinity can be exported as a subroutine Inf():
                   2057: 
                   2058:     use LONCAPA::LCMathComplex qw(Inf sinh);
                   2059:     my $AlsoInf = Inf() + 42;
                   2060:     my $AnotherInf = sinh(1e42);
                   2061:     print "$AlsoInf is $AnotherInf\n" if $AlsoInf == $AnotherInf;
                   2062: 
                   2063: Note that the stringified form of infinity varies between platforms:
                   2064: it can be for example any of
                   2065: 
                   2066:    inf
                   2067:    infinity
                   2068:    INF
                   2069:    1.#INF
                   2070: 
                   2071: or it can be something else. 
                   2072: 
                   2073: Also note that in some platforms trying to use the infinity in
                   2074: arithmetic operations may result in Perl crashing because using
                   2075: an infinity causes SIGFPE or its moral equivalent to be sent.
                   2076: The way to ignore this is
                   2077: 
                   2078:   local $SIG{FPE} = sub { };
                   2079: 
                   2080: =head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO
                   2081: 
                   2082: The division (/) and the following functions
                   2083: 
                   2084: 	log	ln	log10	logn
                   2085: 	tan	sec	csc	cot
                   2086: 	atan	asec	acsc	acot
                   2087: 	tanh	sech	csch	coth
                   2088: 	atanh	asech	acsch	acoth
                   2089: 
                   2090: cannot be computed for all arguments because that would mean dividing
                   2091: by zero or taking logarithm of zero. These situations cause fatal
                   2092: runtime errors looking like this
                   2093: 
                   2094: 	cot(0): Division by zero.
                   2095: 	(Because in the definition of cot(0), the divisor sin(0) is 0)
                   2096: 	Died at ...
                   2097: 
                   2098: or
                   2099: 
                   2100: 	atanh(-1): Logarithm of zero.
                   2101: 	Died at...
                   2102: 
                   2103: For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
                   2104: C<asech>, C<acsch>, the argument cannot be C<0> (zero).  For the
                   2105: logarithmic functions and the C<atanh>, C<acoth>, the argument cannot
                   2106: be C<1> (one).  For the C<atanh>, C<acoth>, the argument cannot be
                   2107: C<-1> (minus one).  For the C<atan>, C<acot>, the argument cannot be
                   2108: C<i> (the imaginary unit).  For the C<atan>, C<acoth>, the argument
                   2109: cannot be C<-i> (the negative imaginary unit).  For the C<tan>,
                   2110: C<sec>, C<tanh>, the argument cannot be I<pi/2 + k * pi>, where I<k>
                   2111: is any integer.  atan2(0, 0) is undefined, and if the complex arguments
                   2112: are used for atan2(), a division by zero will happen if z1**2+z2**2 == 0.
                   2113: 
                   2114: Note that because we are operating on approximations of real numbers,
                   2115: these errors can happen when merely `too close' to the singularities
                   2116: listed above.
                   2117: 
                   2118: =head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS
                   2119: 
                   2120: The C<make> and C<emake> accept both real and complex arguments.
                   2121: When they cannot recognize the arguments they will die with error
                   2122: messages like the following
                   2123: 
                   2124:     LONCAPA::LCMathComplex::make: Cannot take real part of ...
                   2125:     LONCAPA::LCMathComplex::make: Cannot take real part of ...
1.2     ! raeburn  2126:     LONCAPA::LCMathComplex::emake: Cannot take rho of ...
1.1       raeburn  2127:     LONCAPA::LCMathComplex::emake: Cannot take theta of ...
                   2128: 
                   2129: =head1 BUGS
                   2130: 
                   2131: Saying C<use LONCAPA::LCMathComplex;> exports many mathematical routines in the
                   2132: caller environment and even overrides some (C<sqrt>, C<log>, C<atan2>).
                   2133: This is construed as a feature by the Authors, actually... ;-)
                   2134: 
                   2135: All routines expect to be given real or complex numbers. Don't attempt to
                   2136: use BigFloat, since Perl has currently no rule to disambiguate a '+'
                   2137: operation (for instance) between two overloaded entities.
                   2138: 
                   2139: In Cray UNICOS there is some strange numerical instability that results
                   2140: in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast.  Beware.
                   2141: The bug may be in UNICOS math libs, in UNICOS C compiler, in LONCAPA::LCMathComplex.
                   2142: Whatever it is, it does not manifest itself anywhere else where Perl runs.
                   2143: 
                   2144: =head1 SEE ALSO
                   2145: 
                   2146: L<Math::Trig>
                   2147: 
                   2148: =head1 AUTHORS
                   2149: 
1.2     ! raeburn  2150: Daniel S. Lewart <F<lewart!at!uiuc.edu>>,
        !          2151: Jarkko Hietaniemi <F<jhi!at!iki.fi>>,
        !          2152: Raphael Manfredi <F<Raphael_Manfredi!at!pobox.com>>,
        !          2153: Zefram <zefram@fysh.org>
1.1       raeburn  2154: 
                   2155: =head1 LICENSE
                   2156: 
                   2157: This library is free software; you can redistribute it and/or modify
                   2158: it under the same terms as Perl itself. 
                   2159: 
                   2160: =cut
                   2161: 
                   2162: 1;
                   2163: 
                   2164: # eof

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>